コード例 #1
0
ファイル: contacts.py プロジェクト: nffaruk/ProDy
    def __init__(self, atoms, unitcell=None):
        """*atoms* must be an :class:`.Atomic` instance.  
        
        :arg unitcell: orthorhombic unitcell dimension array with shape 
                        ``(3,)`` for KDTree. Default is **None**.
        :type unitcell: :class:`~numpy.ndarray`"""

        try:
            self._acsi = atoms.getACSIndex()
        except AttributeError:
            try:
                self._ag = atoms.getAtoms()
                unitcell = unitcell or atoms.getUnitcell()[:3]
                self._indices = atoms.getSelection()
            except AttributeError:
                try:
                    ndim, shape = atoms.ndim, atoms.shape
                except AttributeError:
                    raise TypeError('atoms must be an Atomic or Frame instance'
                                    ', not a {0}'.format(type(atoms)))
                else:
                    if not (ndim == 2 and shape[1] == 3):
                        raise ValueError('atoms.shape must be (n_atoms, 3) or '
                                         '(3,).')
                    self._ag = None
                    self._indices = None
                    self._kdtree = KDTree(atoms, unitcell=unitcell)
            else:
                if self._ag is not None:
                    self._acsi = self._ag.getACSIndex()
                    if self._indices is not None:
                        self._indices = self._indices.getIndices()
                else:
                    self._acsi = None
                self._kdtree = KDTree(atoms._getCoords(), unitcell=unitcell)
        else:
            try:
                self._ag = atoms.getAtomGroup()
            except AttributeError:
                self._ag = atoms
                self._indices = None
                self._kdtree = KDTree(atoms._getCoords(), unitcell=unitcell)
            else:
                self._indices = atoms._getIndices()
                self._kdtree = KDTree(atoms._getCoords(), unitcell=unitcell)
        self._unitcell = unitcell
        self._atoms = atoms
コード例 #2
0
ファイル: contacts.py プロジェクト: agiorgetti1971/ProDy-1
    def __init__(self, atoms, unitcell=None):
        """*atoms* must be an :class:`.Atomic` instance.  When an orthorhombic
        *unitcell* array is given"""

        try:
            self._acsi = atoms.getACSIndex()
        except AttributeError:
            try:
                self._ag = atoms.getAtoms()
                unitcell = unitcell or atoms.getUnitcell()[:3]
                self._indices = atoms.getSelection()
            except AttributeError:
                try:
                    ndim, shape = atoms.ndim, atoms.shape
                except AttributeError:
                    raise TypeError('atoms must be an Atomic or Frame instance'
                                    ', not a {0}'.format(type(atoms)))
                else:
                    if not (ndim == 2 and shape[1] == 3):
                        raise ValueError('atoms.shape must be (n_atoms, 3) or '
                                         '(3,).')
                    self._ag = None
                    self._indices = None
                    self._kdtree = KDTree(atoms, unitcell=unitcell)
            else:
                if self._ag is not None:
                    self._acsi = self._ag.getACSIndex()
                    if self._indices is not None:
                        self._indices = self._indices.getIndices()
                else:
                    self._acsi = None
                self._kdtree = KDTree(self._atoms._getCoords(),
                                      unitcell=unitcell)
        else:
            try:
                self._ag = atoms.getAtomGroup()
            except AttributeError:
                self._ag = atoms
                self._indices = None
                self._kdtree = KDTree(atoms._getCoords(), unitcell=unitcell)
            else:
                self._indices = atoms._getIndices()
                self._kdtree = KDTree(atoms._getCoords(), unitcell=unitcell)
        self._unitcell = unitcell
        self._atoms = atoms
コード例 #3
0
    def _getKDTree(self, index=None):
        """Return KDTree for coordinate set at given index."""

        if self._n_csets:
            if index is None:
                index = self._acsi
            kdtree = self._kdtrees[index]
            if kdtree is None:
                kdtree = KDTree(self._coords[index])
                self._kdtrees[index] = kdtree
            return kdtree
        else:
            return None
コード例 #4
0
ファイル: measure.py プロジェクト: SHZ66/ProDy
def calcDistanceMatrix(coords, cutoff=None):
    """Calculate matrix of distances between coordinates within *cutoff*.
    Other matrix entries are set to maximum of calculated distances.

    :arg coords: a coordinate set or an object with :meth:`getCoords` method.
    :type coords: :class:`~numpy.ndarray`, :class:`.Atomic`

    :arg cutoff: cutoff distance for searching the KDTree.
        Default (**None**) is to use the length of the longest coordinate axis.
    :type cutoff: None, float
    """
    try:
        coords = (coords._getCoords()
                  if hasattr(coords, '_getCoords') else coords.getCoords())
    except AttributeError:
        try:
            checkCoords(coords)
        except TypeError:
            raise TypeError('coords must be a Numpy array or an object '
                            'with `getCoords` method')

    n_atoms = coords.shape[0]
    dist_mat = zeros((n_atoms, n_atoms))

    if cutoff is None:
        cutoff = max(coords.max(axis=0) - coords.min(axis=0))

    kdtree = KDTree(coords)
    kdtree.search(cutoff)

    dists = kdtree.getDistances()

    r = 0
    for i, j in kdtree.getIndices():
        dist_mat[i, j] = dist_mat[j, i] = dists[r]
        r += 1

    for i in range(n_atoms):
        for j in range(i + 1, n_atoms):
            if dist_mat[i, j] == 0.:
                dist_mat[i, j] = dist_mat[j, i] = max(dists)

    return dist_mat
コード例 #5
0
ファイル: gnm.py プロジェクト: sixpi/ProDy
    def buildKirchhoff(self, coords, cutoff=10., gamma=1., **kwargs):
        """Build Kirchhoff matrix for given coordinate set.

        :arg coords: a coordinate set or an object with ``getCoords`` method
        :type coords: :class:`numpy.ndarray` or :class:`.Atomic`

        :arg cutoff: cutoff distance (Å) for pairwise interactions
            default is 10.0 Å, , minimum is 4.0 Å
        :type cutoff: float

        :arg gamma: spring constant, default is 1.0
        :type gamma: float

        :arg sparse: elect to use sparse matrices, default is **False**. If
            Scipy is not found, :class:`ImportError` is raised.
        :type sparse: bool

        :arg kdtree: elect to use KDTree for building Kirchhoff matrix faster,
            default is **True**
        :type kdtree: bool


        Instances of :class:`Gamma` classes and custom functions are
        accepted as *gamma* argument.

        When Scipy is available, user can select to use sparse matrices for
        efficient usage of memory at the cost of computation speed."""

        try:
            coords = (coords._getCoords() if hasattr(coords, '_getCoords') else
                      coords.getCoords())
        except AttributeError:
            try:
                checkCoords(coords)
            except TypeError:
                raise TypeError('coords must be a Numpy array or an object '
                                'with `getCoords` method')

        cutoff, g, gamma = checkENMParameters(cutoff, gamma)
        self._reset()
        self._cutoff = cutoff
        self._gamma = g

        n_atoms = coords.shape[0]
        start = time.time()
        if kwargs.get('sparse', False):
            try:
                from scipy import sparse as scipy_sparse
            except ImportError:
                raise ImportError('failed to import scipy.sparse, which  is '
                                  'required for sparse matrix calculations')
            kirchhoff = scipy_sparse.lil_matrix((n_atoms, n_atoms))
        else:
            kirchhoff = np.zeros((n_atoms, n_atoms), 'd')

        if kwargs.get('kdtree', True):
            kdtree = KDTree(coords)
            kdtree.search(cutoff)
            dist2 = kdtree.getDistances() ** 2
            r = 0
            for i, j in kdtree.getIndices():
                g = gamma(dist2[r], i, j)
                kirchhoff[i, j] = -g
                kirchhoff[j, i] = -g
                kirchhoff[i, i] = kirchhoff[i, i] + g
                kirchhoff[j, j] = kirchhoff[j, j] + g
                r += 1
        else:
            LOGGER.info('Using slower method for building the Kirchhoff.')
            cutoff2 = cutoff * cutoff
            mul = np.multiply
            for i in range(n_atoms):
                xyz_i = coords[i, :]
                i_p1 = i+1
                i2j = coords[i_p1:, :] - xyz_i
                mul(i2j, i2j, i2j)
                for j, dist2 in enumerate(i2j.sum(1)):
                    if dist2 > cutoff2:
                        continue
                    j += i_p1
                    g = gamma(dist2, i, j)
                    kirchhoff[i, j] = -g
                    kirchhoff[j, i] = -g
                    kirchhoff[i, i] = kirchhoff[i, i] + g
                    kirchhoff[j, j] = kirchhoff[j, j] + g

        LOGGER.debug('Kirchhoff was built in {0:.2f}s.'
                     .format(time.time()-start))
        self._kirchhoff = kirchhoff
        self._n_atoms = n_atoms
        self._dof = n_atoms
コード例 #6
0
ファイル: anm.py プロジェクト: fongchun/ProDy
    def buildHessian(self, coords, cutoff=15., gamma=1., **kwargs):
        """Build Hessian matrix for given coordinate set.

        :arg coords: a coordinate set or an object with ``getCoords`` method
        :type coords: :class:`numpy.ndarray`

        :arg cutoff: cutoff distance (Å) for pairwise interactions,
            default is 15.0 Å, minimum is 4.0 Å
        :type cutoff: float

        :arg gamma: spring constant, default is 1.0
        :type gamma: float, :class:`Gamma`

        :arg sparse: elect to use sparse matrices, default is **False**. If
            Scipy is not found, :class:`ImportError` is raised.
        :type sparse: bool

        :arg kdtree: elect to use KDTree for building Hessian matrix,
            default is **False** since KDTree method is slower
        :type kdtree: bool

        Instances of :class:`Gamma` classes and custom functions are
        accepted as *gamma* argument.

        When Scipy is available, user can select to use sparse matrices for
        efficient usage of memory at the cost of computation speed."""

        try:
            coords = (coords._getCoords() if hasattr(coords, '_getCoords') else
                      coords.getCoords())
        except AttributeError:
            try:
                checkCoords(coords)
            except TypeError:
                raise TypeError('coords must be a Numpy array or an object '
                                'with `getCoords` method')

        cutoff, g, gamma = checkENMParameters(cutoff, gamma)
        self._reset()
        self._cutoff = cutoff
        self._gamma = g
        n_atoms = coords.shape[0]

        dof = n_atoms * 3
        LOGGER.timeit('_anm_hessian')

        if kwargs.get('sparse', False):
            try:
                from scipy import sparse as scipy_sparse
            except ImportError:
                raise ImportError('failed to import scipy.sparse, which  is '
                                  'required for sparse matrix calculations')
            kirchhoff = scipy_sparse.lil_matrix((n_atoms, n_atoms))
            hessian = scipy_sparse.lil_matrix((dof, dof))
        else:
            kirchhoff = np.zeros((n_atoms, n_atoms), 'd')
            hessian = np.zeros((dof, dof), float)

        if kwargs.get('kdtree', False):
            LOGGER.info('Using KDTree for building the Hessian.')
            kdtree = KDTree(coords)
            kdtree.search(cutoff)
            for i, j in kdtree.getIndices():
                i2j = coords[j] - coords[i]
                dist2 = np.dot(i2j, i2j)
                g = gamma(dist2, i, j)
                super_element = np.outer(i2j, i2j) * (- g / dist2)
                res_i3 = i*3
                res_i33 = res_i3+3
                res_j3 = j*3
                res_j33 = res_j3+3
                hessian[res_i3:res_i33, res_j3:res_j33] = super_element
                hessian[res_j3:res_j33, res_i3:res_i33] = super_element
                hessian[res_i3:res_i33, res_i3:res_i33] = \
                    hessian[res_i3:res_i33, res_i3:res_i33] - super_element
                hessian[res_j3:res_j33, res_j3:res_j33] = \
                    hessian[res_j3:res_j33, res_j3:res_j33] - super_element
                kirchhoff[i, j] = -g
                kirchhoff[j, i] = -g
                kirchhoff[i, i] = kirchhoff[i, i] - g
                kirchhoff[j, j] = kirchhoff[j, j] - g
        else:
            cutoff2 = cutoff * cutoff
            for i in range(n_atoms):
                res_i3 = i*3
                res_i33 = res_i3+3
                i_p1 = i+1
                i2j_all = coords[i_p1:, :] - coords[i]
                for j, dist2 in enumerate((i2j_all ** 2).sum(1)):
                    if dist2 > cutoff2:
                        continue
                    i2j = i2j_all[j]
                    j += i_p1
                    g = gamma(dist2, i, j)
                    res_j3 = j*3
                    res_j33 = res_j3+3
                    super_element = np.outer(i2j, i2j) * (- g / dist2)
                    hessian[res_i3:res_i33, res_j3:res_j33] = super_element
                    hessian[res_j3:res_j33, res_i3:res_i33] = super_element
                    hessian[res_i3:res_i33, res_i3:res_i33] = \
                        hessian[res_i3:res_i33, res_i3:res_i33] - super_element
                    hessian[res_j3:res_j33, res_j3:res_j33] = \
                        hessian[res_j3:res_j33, res_j3:res_j33] - super_element
                    kirchhoff[i, j] = -g
                    kirchhoff[j, i] = -g
                    kirchhoff[i, i] = kirchhoff[i, i] - g
                    kirchhoff[j, j] = kirchhoff[j, j] - g
        LOGGER.report('Hessian was built in %.2fs.', label='_anm_hessian')
        self._kirchhoff = kirchhoff
        self._hessian = hessian
        self._n_atoms = n_atoms
        self._dof = dof
コード例 #7
0
ファイル: contacts.py プロジェクト: emalacs/FF_creator
def iterNeighbors(atoms, radius, atoms2=None, unitcell=None):
    """Yield pairs of *atoms* that are within *radius* of each other and the
    distance between them.  If *atoms2* is also provided, one atom from *atoms*
    and another from *atoms2* will be yielded.  If one of *atoms* or *atoms2*
    is a coordinate array, pairs of indices and distances will be yielded.
    When orthorhombic *unitcell* dimensions are provided, periodic boundary
    conditions will be taken into account (see :class:`.KDTree` and also
    :func:`wrapAtoms` for details).  If *atoms* is a :class:`.Frame` instance
    and *unitcell* is not provided, unitcell information from frame will be
    if available."""

    radius = float(radius)
    if radius <= 0:
        raise ValueError('radius must be a positive number')

    try:
        acsi = atoms.getACSIndex()
    except AttributeError:
        try:
            ndim, shape = atoms.ndim, atoms.shape
        except AttributeError:
            try:
                uc = atoms.getUnitcell()[:3]
            except AttributeError:
                raise TypeError('atoms must be an Atomic or Frame instance or '
                                'a coordinate array')
            else:
                coords = atoms._getCoords()
                ag = atoms.getAtoms()
                if unitcell is None:
                    unitcell = uc
                if ag is not None:
                    acsi = ag.getACSIndex()
                    _ = atoms.getSelection()
                    if _:
                        indices = _._getIndices()
                        index = lambda i: indices[i]
                    else:
                        index = lambda i: i
        else:
            if ndim > 2:
                raise ValueError('number of dimensions of coordinate array '
                                 'must be 1 or 2')
            coords = atoms
            ag = None
            acsi = None
    else:
        coords = atoms._getCoords()
        try:
            ag = atoms.getAtomGroup()
            indices = atoms.getIndices()
            index = lambda i: indices[i]
        except AttributeError:
            ag = atoms
            index = lambda i: i

    if coords.ndim == 1:
        coords = array([coords])

    if atoms2 is None:
        if len(coords) <= 1:
            raise ValueError('atoms must be more than 1')

        kdtree = KDTree(coords, unitcell=unitcell, none=list)

        _dict = {}
        if ag is None:
            for (i, j), r in zip(*kdtree(radius)):
                yield (i, j, r)
        else:
            for (i, j), r in zip(*kdtree(radius)):
                a1 = _dict.get(i)
                if a1 is None:
                    a1 = Atom(ag, index(i), acsi)
                    _dict[i] = a1
                a2 = _dict.get(j)
                if a2 is None:
                    a2 = Atom(ag, index(j), acsi)
                    _dict[j] = a2
                yield (a1, a2, r)
    else:
        try:
            coords2 = atoms2._getCoords()
        except AttributeError:
            try:
                ndim, shape = atoms2.ndim, atoms2.shape
            except AttributeError:
                raise TypeError(
                    'atoms2 must be an Atomic or Frame instance or '
                    'a coordinate array')
            else:
                if ndim > 2:
                    raise ValueError('number of dimensions of second '
                                     'coordinate array must be 1 or 2')
                coords2 = atoms2
                ag2 = None
                acsi2 = None
        else:
            try:
                acsi2 = atoms2.getACSIndex()
            except AttributeError:
                acsi2 = None
                ag2 = None
                index2 = None
            else:
                try:
                    ag2 = atoms2.getAtomGroup()
                    indices2 = atoms2.getIndices()
                    index2 = lambda i: indices2[i]
                except AttributeError:
                    ag2 = atoms2
                    index2 = lambda i: i

        if coords2.ndim == 1:
            coords2 = array([coords2])
        if len(coords) >= len(coords2):
            kdtree = KDTree(coords, unitcell=unitcell, none=list)
            _dict = {}
            if ag is None or ag2 is None:
                for j, xyz in enumerate(coords2):
                    for i, r in zip(*kdtree(radius, xyz)):
                        yield (i, j, r)
            else:
                for a2 in atoms2.iterAtoms():
                    for i, r in zip(*kdtree(radius, a2._getCoords())):
                        a1 = _dict.get(i)
                        if a1 is None:
                            a1 = Atom(ag, index(i), acsi)
                            _dict[i] = a1
                        yield (a1, a2, r)
        else:
            kdtree = KDTree(coords2, unitcell=unitcell, none=list)
            _dict = {}
            if ag is None or ag2 is None:
                for i, xyz in enumerate(coords):
                    for j, r in zip(*kdtree(radius, xyz)):
                        yield (i, j, r)
            else:
                for a1 in atoms.iterAtoms():
                    for i, r in zip(*kdtree(radius, a1._getCoords())):
                        a2 = _dict.get(i)
                        if a2 is None:
                            a2 = Atom(ag2, index2(i), acsi2)
                            _dict[i] = a2
                        yield (a1, a2, r)
コード例 #8
0
ファイル: anm.py プロジェクト: hrch3n/cNMA
    def buildHessian(self, coords, cutoff=15., gamma=1., **kwargs):
        """Build Hessian matrix for given coordinate set.

        :arg coords: a coordinate set or an object with ``getCoords`` method
        :type coords: :class:`numpy.ndarray`

        :arg cutoff: cutoff distance (Å) for pairwise interactions,
            default is 15.0 Å, minimum is 4.0 Å
        :type cutoff: float

        :arg gamma: spring constant, default is 1.0
        :type gamma: float, :class:`Gamma`

        :arg sparse: elect to use sparse matrices, default is **False**. If
            Scipy is not found, :class:`ImportError` is raised.
        :type sparse: bool

        :arg kdtree: elect to use KDTree for building Hessian matrix,
            default is **False** since KDTree method is slower
        :type kdtree: bool


        Instances of :class:`Gamma` classes and custom functions are
        accepted as *gamma* argument.

        When Scipy is available, user can select to use sparse matrices for
        efficient usage of memory at the cost of computation speed."""

        try:
            coords = (coords._getCoords() if hasattr(coords, '_getCoords') else
                      coords.getCoords())
        except AttributeError:
            try:
                checkCoords(coords)
            except TypeError:
                raise TypeError('coords must be a Numpy array or an object '
                                'with `getCoords` method')

        cutoff, g, gamma = checkENMParameters(cutoff, gamma)
        self._reset()
        self._cutoff = cutoff
        self._gamma = g
        n_atoms = coords.shape[0]
        dof = n_atoms * 3
        LOGGER.timeit('_anm_hessian')

        if kwargs.get('sparse', False):
            try:
                from scipy import sparse as scipy_sparse
            except ImportError:
                raise ImportError('failed to import scipy.sparse, which  is '
                                  'required for sparse matrix calculations')
            kirchhoff = scipy_sparse.lil_matrix((n_atoms, n_atoms))
            hessian = scipy_sparse.lil_matrix((dof, dof))
        else:
            kirchhoff = np.zeros((n_atoms, n_atoms), 'd')
            hessian = np.zeros((dof, dof), float)

        if kwargs.get('kdtree', False):
            LOGGER.info('Using KDTree for building the Hessian.')
            kdtree = KDTree(coords)
            kdtree.search(cutoff)
            for i, j in kdtree.getIndices():
                i2j = coords[j] - coords[i]
                dist2 = np.dot(i2j, i2j)
                g = gamma(dist2, i, j)
                super_element = np.outer(i2j, i2j) * (- g / dist2)
                res_i3 = i*3
                res_i33 = res_i3+3
                res_j3 = j*3
                res_j33 = res_j3+3
                hessian[res_i3:res_i33, res_j3:res_j33] = super_element
                hessian[res_j3:res_j33, res_i3:res_i33] = super_element
                hessian[res_i3:res_i33, res_i3:res_i33] = \
                    hessian[res_i3:res_i33, res_i3:res_i33] - super_element
                hessian[res_j3:res_j33, res_j3:res_j33] = \
                    hessian[res_j3:res_j33, res_j3:res_j33] - super_element
                kirchhoff[i, j] = -g
                kirchhoff[j, i] = -g
                kirchhoff[i, i] = kirchhoff[i, i] - g
                kirchhoff[j, j] = kirchhoff[j, j] - g
        else:
            cutoff2 = cutoff * cutoff
            for i in range(n_atoms):
                res_i3 = i*3
                res_i33 = res_i3+3
                i_p1 = i+1
                i2j_all = coords[i_p1:, :] - coords[i]
                for j, dist2 in enumerate((i2j_all ** 2).sum(1)):
                    if dist2 > cutoff2:
                        continue
                    i2j = i2j_all[j]
                    j += i_p1
                    g = gamma(dist2, i, j)
                    res_j3 = j*3
                    res_j33 = res_j3+3
                    super_element = np.outer(i2j, i2j) * (- g / dist2)
                    hessian[res_i3:res_i33, res_j3:res_j33] = super_element
                    hessian[res_j3:res_j33, res_i3:res_i33] = super_element
                    hessian[res_i3:res_i33, res_i3:res_i33] = \
                        hessian[res_i3:res_i33, res_i3:res_i33] - super_element
                    hessian[res_j3:res_j33, res_j3:res_j33] = \
                        hessian[res_j3:res_j33, res_j3:res_j33] - super_element
                    kirchhoff[i, j] = -g
                    kirchhoff[j, i] = -g
                    kirchhoff[i, i] = kirchhoff[i, i] - g
                    kirchhoff[j, j] = kirchhoff[j, j] - g
        LOGGER.report('Hessian was built in %.2fs.', label='_anm_hessian')
        self._kirchhoff = kirchhoff
        self._hessian = hessian
        self._n_atoms = n_atoms
        self._dof = dof
コード例 #9
0
ファイル: test_kdtree.py プロジェクト: npabon/ProDy
    def setUp(self):

        self.coords = tile(arange(10), (3,1)).T.astype(float)
        self.kdtree = KDTree(self.coords)
コード例 #10
0
ファイル: test_kdtree.py プロジェクト: npabon/ProDy
        self.assertEqual(len(indices), 9, 'KDTree all search failed')
        for pair, radius in zip(indices, radii):
            x, y = coords[pair]
            assert_allclose(((x - y)**2).sum()**0.5, radius,
                            rtol=RTOL, atol=ATOL,
                            err_msg='KDTree all search failed')


COORDS = array([[-1., -1., 0.],
                [-1.,  5., 0.],
                [ 2.,  2., 0.],
                [ 5., -1., 0.],
                [ 5.,  5., 0.],])
UNITCELL = array([4., 4., 0.])

KDTREE = KDTree(COORDS)
KDTREE_PBC = KDTree(COORDS, unitcell=UNITCELL)

class TestKDTreePBC(unittest.TestCase):

    def testPointNoPBC(self):

        KDTREE.search(2, ones(3) * 2)
        self.assertEqual(1, KDTREE.getCount())

    def testPairNoPBC(self):

        KDTREE.search(2)
        self.assertEqual(0, KDTREE.getCount())

    def testPointPBC(self):
コード例 #11
0
    def buildKirchhoff(self, coords, cutoff=10., gamma=1., **kwargs):
        """Build Kirchhoff matrix for given coordinate set.

        :arg coords: a coordinate set or an object with ``getCoords`` method
        :type coords: :class:`numpy.ndarray` or :class:`.Atomic`

        :arg cutoff: cutoff distance (Å) for pairwise interactions
            default is 10.0 Å, , minimum is 4.0 Å
        :type cutoff: float

        :arg gamma: spring constant, default is 1.0
        :type gamma: float

        :arg sparse: elect to use sparse matrices, default is **False**. If
            Scipy is not found, :class:`ImportError` is raised.
        :type sparse: bool

        :arg kdtree: elect to use KDTree for building Kirchhoff matrix faster,
            default is **True**
        :type kdtree: bool


        Instances of :class:`Gamma` classes and custom functions are
        accepted as *gamma* argument.

        When Scipy is available, user can select to use sparse matrices for
        efficient usage of memory at the cost of computation speed."""

        try:
            coords = (coords._getCoords()
                      if hasattr(coords, '_getCoords') else coords.getCoords())
        except AttributeError:
            try:
                checkCoords(coords)
            except TypeError:
                raise TypeError('coords must be a Numpy array or an object '
                                'with `getCoords` method')

        cutoff, g, gamma = checkENMParameters(cutoff, gamma)
        self._reset()
        self._cutoff = cutoff
        self._gamma = g

        n_atoms = coords.shape[0]
        start = time.time()
        if kwargs.get('sparse', False):
            try:
                from scipy import sparse as scipy_sparse
            except ImportError:
                raise ImportError('failed to import scipy.sparse, which  is '
                                  'required for sparse matrix calculations')
            kirchhoff = scipy_sparse.lil_matrix((n_atoms, n_atoms))
        else:
            kirchhoff = np.zeros((n_atoms, n_atoms), 'd')

        if kwargs.get('kdtree', True):
            kdtree = KDTree(coords)
            kdtree.search(cutoff)
            dist2 = kdtree.getDistances()**2
            r = 0
            for i, j in kdtree.getIndices():
                g = gamma(dist2[r], i, j)
                kirchhoff[i, j] = -g
                kirchhoff[j, i] = -g
                kirchhoff[i, i] = kirchhoff[i, i] + g
                kirchhoff[j, j] = kirchhoff[j, j] + g
                r += 1
        else:
            LOGGER.info('Using slower method for building the Kirchhoff.')
            cutoff2 = cutoff * cutoff
            mul = np.multiply
            for i in range(n_atoms):
                xyz_i = coords[i, :]
                i_p1 = i + 1
                i2j = coords[i_p1:, :] - xyz_i
                mul(i2j, i2j, i2j)
                for j, dist2 in enumerate(i2j.sum(1)):
                    if dist2 > cutoff2:
                        continue
                    j += i_p1
                    g = gamma(dist2, i, j)
                    kirchhoff[i, j] = -g
                    kirchhoff[j, i] = -g
                    kirchhoff[i, i] = kirchhoff[i, i] + g
                    kirchhoff[j, j] = kirchhoff[j, j] + g

        LOGGER.debug('Kirchhoff was built in {0:.2f}s.'.format(time.time() -
                                                               start))
        self._kirchhoff = kirchhoff
        self._n_atoms = n_atoms
        self._dof = n_atoms