from calculates import calculate from profile import letters import numpy as np count = 200 n = letters.get('m') + 4 x = [1, 2, 3, 4, 5] p = [0.04 * letters.get('a'), 0.1 * letters.get('b'), 0.02 * letters.get('g') + 0.03 * letters.get('m'), 0.01 * letters.get('n') + 0.04 * letters.get('q'), 1 - (0.04 * letters.get('a') + 0.1 * letters.get('b') + 0.02 * letters.get('g') + 0.03 * letters.get('m') + 0.01 * letters.get('n') + 0.04 * letters.get('q'))] print(p) values = np.random.choice(x, count, p=p) calculate(values)
import numpy as np from calculates import calculate from profile import letters count = 100 a = letters.get('m') sigma = letters.get('n') + 1 values = np.random.normal(a, sigma, size=count) calculate(values)
from calculates import calculate from scipy.stats import binom from profile import letters count = 200 p = (5 * letters.get('m') + 5 * letters.get('n') + 10) / 100 n = 2 + letters.get('m') + letters.get('n') values = binom.rvs(n, p, size=count) calculate(values)
import numpy as np from calculates import calculate from profile import letters count = 200 l = letters.get('m') + letters.get('n') + letters.get('q') values = np.random.exponential(l, size=count) calculate(values)
import numpy as np from calculates import calculate from profile import letters count = 200 p = 0.08 * letters.get('m') + 0.02 * letters.get('n') n = 30 + 1 + letters.get('n') values = np.random.poisson(n * p, count) calculate(values)