def main(args, return_dict={}): config = get_config(args.config, overrides=args.override, show=True) config.mode = "valid" # assign place use_gpu = config.get("use_gpu", True) place = paddle.set_device('gpu' if use_gpu else 'cpu') trainer_num = paddle.distributed.get_world_size() use_data_parallel = trainer_num != 1 config["use_data_parallel"] = use_data_parallel if config["use_data_parallel"]: paddle.distributed.init_parallel_env() net = program.create_model(config.ARCHITECTURE, config.classes_num) if config["use_data_parallel"]: net = paddle.DataParallel(net) init_model(config, net, optimizer=None) valid_dataloader = Reader(config, 'valid', places=place)() net.eval() with paddle.no_grad(): top1_acc = program.run(valid_dataloader, config, net, None, None, 0, 'valid') return_dict["top1_acc"] = top1_acc return top1_acc
def main(args, return_dict={}): config = get_config(args.config, overrides=args.override, show=True) config.mode = "valid" # assign place use_gpu = config.get("use_gpu", True) place = paddle.set_device('gpu' if use_gpu else 'cpu') multilabel = config.get("multilabel", False) trainer_num = paddle.distributed.get_world_size() use_data_parallel = trainer_num != 1 config["use_data_parallel"] = use_data_parallel if config["use_data_parallel"]: paddle.distributed.init_parallel_env() net = program.create_model(config.ARCHITECTURE, config.classes_num) init_model(config, net, optimizer=None) valid_dataloader = Reader(config, 'valid', places=place)() net.eval() with paddle.no_grad(): if not multilabel: top1_acc = program.run(valid_dataloader, config, net, None, None, 0, 'valid') return_dict["top1_acc"] = top1_acc return top1_acc else: all_outs = [] targets = [] for _, batch in enumerate(valid_dataloader()): feeds = program.create_feeds(batch, False, config.classes_num, multilabel) out = net(feeds["image"]) out = F.sigmoid(out) use_distillation = config.get("use_distillation", False) if use_distillation: out = out[1] all_outs.extend(list(out.numpy())) targets.extend(list(feeds["label"].numpy())) all_outs = np.array(all_outs) targets = np.array(targets) mAP = mean_average_precision(all_outs, targets) return_dict["mean average precision"] = mAP return mAP
def main(args, return_dict={}): config = get_config(args.config, overrides=args.override, show=True) config.mode = "valid" # assign place use_gpu = config.get("use_gpu", True) place = paddle.set_device('gpu' if use_gpu else 'cpu') trainer_num = paddle.distributed.get_world_size() use_data_parallel = trainer_num != 1 config["use_data_parallel"] = use_data_parallel if config["use_data_parallel"]: paddle.distributed.init_parallel_env() net = program.create_model(config.ARCHITECTURE, config.classes_num) if config["use_data_parallel"]: net = paddle.DataParallel(net) init_model(config, net, optimizer=None) save_model(net, None, model_path='./pretrained/10w/', epoch_id=0, prefix='ppcls')
def main(args): paddle.seed(12345) config = get_config(args.config, overrides=args.override, show=True) # assign the place use_gpu = config.get("use_gpu", True) place = paddle.set_device('gpu' if use_gpu else 'cpu') trainer_num = paddle.distributed.get_world_size() use_data_parallel = trainer_num != 1 config["use_data_parallel"] = use_data_parallel if config["use_data_parallel"]: paddle.distributed.init_parallel_env() net = program.create_model(config.ARCHITECTURE, config.classes_num) optimizer, lr_scheduler = program.create_optimizer( config, parameter_list=net.parameters()) if config["use_data_parallel"]: net = paddle.DataParallel(net) # load model from checkpoint or pretrained model init_model(config, net, optimizer) train_dataloader = Reader(config, 'train', places=place)() if config.validate: valid_dataloader = Reader(config, 'valid', places=place)() last_epoch_id = config.get("last_epoch", -1) best_top1_acc = 0.0 # best top1 acc record best_top1_epoch = last_epoch_id for epoch_id in range(last_epoch_id + 1, config.epochs): net.train() # 1. train with train dataset program.run(train_dataloader, config, net, optimizer, lr_scheduler, epoch_id, 'train') # 2. validate with validate dataset if config.validate and epoch_id % config.valid_interval == 0: net.eval() with paddle.no_grad(): top1_acc = program.run(valid_dataloader, config, net, None, None, epoch_id, 'valid') if top1_acc > best_top1_acc: best_top1_acc = top1_acc best_top1_epoch = epoch_id if epoch_id % config.save_interval == 0: model_path = os.path.join(config.model_save_dir, config.ARCHITECTURE["name"]) save_model(net, optimizer, model_path, "best_model") message = "The best top1 acc {:.5f}, in epoch: {:d}".format( best_top1_acc, best_top1_epoch) logger.info("{:s}".format(logger.coloring(message, "RED"))) # 3. save the persistable model if epoch_id % config.save_interval == 0: model_path = os.path.join(config.model_save_dir, config.ARCHITECTURE["name"]) save_model(net, optimizer, model_path, epoch_id)
def main(args): paddle.seed(12345) config = get_config(args.config, overrides=args.override, show=True) # assign the place use_gpu = config.get("use_gpu", True) place = paddle.set_device('gpu' if use_gpu else 'cpu') trainer_num = paddle.distributed.get_world_size() use_data_parallel = trainer_num != 1 config["use_data_parallel"] = use_data_parallel if config["use_data_parallel"]: paddle.distributed.init_parallel_env() net = program.create_model(config.ARCHITECTURE, config.classes_num) optimizer, lr_scheduler = program.create_optimizer( config, parameter_list=net.parameters()) dp_net = net if config["use_data_parallel"]: find_unused_parameters = config.get("find_unused_parameters", False) dp_net = paddle.DataParallel( net, find_unused_parameters=find_unused_parameters) # load model from checkpoint or pretrained model init_model(config, net, optimizer) train_dataloader = Reader(config, 'train', places=place)() if config.validate: valid_dataloader = Reader(config, 'valid', places=place)() last_epoch_id = config.get("last_epoch", -1) best_top1_acc = 0.0 # best top1 acc record best_top1_epoch = last_epoch_id vdl_writer_path = config.get("vdl_dir", None) vdl_writer = None if vdl_writer_path: from visualdl import LogWriter vdl_writer = LogWriter(vdl_writer_path) # Ensure that the vdl log file can be closed normally try: for epoch_id in range(last_epoch_id + 1, config.epochs): net.train() # 1. train with train dataset program.run(train_dataloader, config, dp_net, optimizer, lr_scheduler, epoch_id, 'train', vdl_writer) # 2. validate with validate dataset if config.validate and epoch_id % config.valid_interval == 0: net.eval() with paddle.no_grad(): top1_acc = program.run(valid_dataloader, config, net, None, None, epoch_id, 'valid', vdl_writer) if top1_acc > best_top1_acc: best_top1_acc = top1_acc best_top1_epoch = epoch_id model_path = os.path.join(config.model_save_dir, config.ARCHITECTURE["name"]) save_model(net, optimizer, model_path, "best_model") message = "The best top1 acc {:.5f}, in epoch: {:d}".format( best_top1_acc, best_top1_epoch) logger.info(message) # 3. save the persistable model if epoch_id % config.save_interval == 0: model_path = os.path.join(config.model_save_dir, config.ARCHITECTURE["name"]) save_model(net, optimizer, model_path, epoch_id) except Exception as e: logger.error(e) finally: vdl_writer.close() if vdl_writer else None