def load_data(): df = pd.read_csv('eod-quotemedia.csv') percent_top_dollar = 0.2 high_volume_symbols = project_helper.large_dollar_volume_stocks( df, 'adj_close', 'adj_volume', percent_top_dollar) df = df[df['ticker'].isin(high_volume_symbols)] close = df.reset_index().pivot(index='date', columns='ticker', values='adj_close') volume = df.reset_index().pivot(index='date', columns='ticker', values='adj_volume') dividends = df.reset_index().pivot(index='date', columns='ticker', values='dividends') return close, volume, dividends
import project_helper import project_tests # ## Market Data # ### Load Data # For this universe of stocks, we'll be selecting large dollar volume stocks. We're using this universe, since it is highly liquid. # In[ ]: df = pd.read_csv("../../data/project_3/eod-quotemedia.csv") percent_top_dollar = 0.2 high_volume_symbols = project_helper.large_dollar_volume_stocks( df, "adj_close", "adj_volume", percent_top_dollar ) df = df[df["ticker"].isin(high_volume_symbols)] close = df.reset_index().pivot(index="date", columns="ticker", values="adj_close") volume = df.reset_index().pivot(index="date", columns="ticker", values="adj_volume") dividends = df.reset_index().pivot(index="date", columns="ticker", values="dividends") # ### View Data # To see what one of these 2-d matrices looks like, let's take a look at the closing prices matrix. # In[ ]: project_helper.print_dataframe(close)