def analyze_allometry_slm(output_dir, log_file, slm_handling, slm, args): curves_processor = common.get_processor(output_dir, log_file, args.verbose, False) curves_processor.preprocess_curves(slm, True) curves_processor.analyze_allometry(output_dir, output_dir, slm_handling=slm_handling)
def compute_means(slm, output_dir, log_file, slm_handling, args): curves_processor = common.get_processor(output_dir, log_file, args.verbose) logging.info('Preprocess curves') curves_processor.preprocess_curves(slm, True) logging.info('Analyze variability') curves_processor.analyze_variability(output_dir, output_dir, slm_handling=slm_handling)
def generate_loading_visualization(input_dir, output_dir, log_file): curves_processor = common.get_processor(input_dir, log_file) common.mkdir_if_not_exist(output_dir) for i in range(curves_processor.get_groups_count() - 1): curves_processor.visualize_loadings(input_dir, output_dir, opts=get_vis_opts( output_dir, [0.03, 0.1], i))
def generate_means_visualization(input_dir, output_dir, log_file, args): curves_processor = common.get_processor(input_dir, log_file) common.mkdir_if_not_exist(output_dir) logging.info('Visualize all means') curves_processor.visualize_means(input_dir, opts=get_vis_opts(output_dir, 0.03, None)) groups_count = curves_processor.get_groups_count() females_shift = int(groups_count / 2) logging.info('Visualize group mean diffs to all mean') for i in range(groups_count): curves_processor.visualize_mean_difference( input_dir, opts=get_vis_opts(output_dir, [0.03, 0.10], [[groups_count, i]], groups_count)) logging.info('Visualize subsequent means diffs') for sex_name, sex_shift in dict(male=0, female=females_shift).items(): logging.info('Visualize subsequent means diffs for %s' % sex_name) for i in range(sex_shift, sex_shift + females_shift - 1): curves_processor.visualize_mean_difference( input_dir, opts=get_vis_opts(output_dir, [0.03, 0.10], [[i, i + 1]], groups_count)) logging.info('Visualize 0-3, 3-6, 0-6') for sex_shift in (0, females_shift): for groups in ([0, 3], [3, 6], [0, 6]): curves_processor.visualize_mean_difference( input_dir, opts=get_vis_opts( output_dir, [0.03, 0.10], [[sex_shift + groups[0], sex_shift + groups[1]]])) logging.info('Visualize sex diffs for 3, 5') for group in (3, 5): curves_processor.visualize_mean_difference( input_dir, opts=get_vis_opts(output_dir, [0.03, 0.10], [[group, females_shift + group]]))
def analyze_io_error_slm(slm, data_dir, output_dir, log_file): curves_processor = common.get_processor(data_dir, log_file) curves_processor.preprocess_curves(slm, True) curves_processor.analyze_io_error(data_dir, common.mkdir_if_not_exist(output_dir))
def compute_variability(slm, output_dir, log_file, slm_handling): curves_processor = common.get_processor(output_dir, log_file) curves_processor.preprocess_curves(slm, True) curves_processor.analyze_variability(output_dir, output_dir, slm_handling=slm_handling)
#!/usr/bin/python3 import os from projects.tibiacurve import common from base import rscriptsupport OUTPUT_DIR = os.path.join(common.TARGET_ROOT, 'TIBIA/CURVATURE/results/length_analysis') OUTPUT_LOG = 'output.txt' curves_processor = common.get_processor(OUTPUT_DIR, OUTPUT_LOG) curves, names = curves_processor.load_all_curves(None) curves_lengths = curves_processor.measure_length(curves) rscript = rscriptsupport.RScripInterface(OUTPUT_DIR) rscript.write_csv('curves_lengths.csv', curves_lengths) curves_processor.length_analysis(OUTPUT_DIR)