コード例 #1
0
ファイル: input.py プロジェクト: nappex/propti
    r.model.label_y = 'MLR_TOTAL'
    r.model.header_line = 1
    r.experiment.file_name = "Data.csv"
    r.experiment.label_x = '# Time_{}_75'.format(iso)
    r.experiment.label_y = 'SG_{}_75'.format(iso)
    r.experiment.header_line = 0
    r.experiment.yfactor = 1e-3
    r.fitness_method = pr.FitnessMethodRMSE(n_points=100)

    # use above model prototype (mps0) as template
    mps = copy.deepcopy(mps0)

    TEND = 600
    # modify a single value of model parameter
    mps[3].value = TEND

    # create simulation setup object
    template_file = "SimpleConeLaunchTest_{}_BestParaSet_Toast.fds".format(iso)
    s = pr.SimulationSetup(name='cone_{}'.format(iso),
                           work_dir='cone_{}'.format(iso),
                           model_template=template_file,
                           model_parameter=mps,
                           model_executable='fds',
                           relations=r)

    # append above object to simulation setup set
    setups.append(s)

# use default values for optimiser
optimiser = pr.OptimiserProperties()
コード例 #2
0
ファイル: input.py プロジェクト: ashishvinayak/propti
                           model_parameter=model_parameter_setups[i],
                           model_executable='fds',
                           relations=r[i])

    ssetups.append(s)


# Initialise empty simulation setup sets.
setups = pr.SimulationSetupSet()


# Append above objects to simulation setup set.
for i in range(len(HeatingRatesTGA)):
    setups.append(ssetups[i])


print('** setups generated')


# Provide values for optimiser.
optimiser = pr.OptimiserProperties(algorithm='sceua',
                                   repetitions=150,
                                   ngs=4,
                                   # Sub-processes would be used for
                                   # repetitions of an experiment.
                                   num_subprocesses=1,
                                   mpi=False)


print('** input file processed')
コード例 #3
0
# define variable 'ops': optimisation parameter set
# define variable 'setups': simulation setup set
# define variable 'optimiser': properties for the optimiser

# import just for IDE convenience
import propti as pr

# fix the chid
CHID = 'TGA_analysis_01'
TEND = 9360

# use default values for optimiser
optimiser = pr.OptimiserProperties(algorithm='sceua', repetitions=10)
#ngs=4,

# define the optimisation parameter
op1 = pr.Parameter(name='ref_temp_comp_01',
                   place_holder='rtc01',
                   min_value=200,
                   max_value=400)
op2 = pr.Parameter(name='ref_rate_comp_01',
                   place_holder='rrc01',
                   min_value=0.001,
                   max_value=0.01)
op3 = pr.Parameter(name='ref_temp_comp_02',
                   place_holder='rtc02',
                   min_value=300,
                   max_value=600)
op4 = pr.Parameter(name='ref_rate_comp_02',
                   place_holder='rrc02',
                   min_value=0.001,
コード例 #4
0
ファイル: propti_sense.py プロジェクト: nappex/propti
# Optimiser to perform FAST sensitivity analysis.

# Use the same data from optimiser for sensitivity analysis
num_subproc = optimiser.num_subprocesses
mpi_bool = optimiser.mpi
backup = optimiser.backup_every

# Compute number of repetitions required
k = len(ops)  # total number of optimization params
(M, d) = 3, 2  # M = inference factor, d = freq. step <spotpy defaults>
rep = (1 + 4 * (M**2) * (1 + (k - 2) * d)) * k

sensitivity = pr.OptimiserProperties('fast',
                                     repetitions=rep,
                                     backup_every=backup,
                                     db_name="propti_sensitivity_db",
                                     db_type="csv",
                                     num_subprocesses=num_subproc,
                                     mpi=mpi_bool)

print(ver, setups, ops, sensitivity)
'''
Not writing any data to pickle file since there is only
one method to analyse sensitivity. It makes sense to Wiki this instead.
'''
# Write sensitivity pickle file
# out_file = open('propti_sensitivity.pickle.init', 'wb')
# pickle.dump((setups, ops, optimiser), out_file)
# out_file.close()

# Run optimization.