def define_columns(self): """ See base class """ columns, excluded_cols = [], self.amenities_list + ['picture_url'] col_info = get_column_info(self.data, excluded=excluded_cols) for (name, ftype) in col_info: mapped_type = map_feature_type(self.data[name].dtype) if is_categorical(ftype): # Categorical data if name in self.hardcoded_buckets: # If hardcoded, take value keys = self.hardcoded_buckets[name] else: # Otherwise is safe to take it from the dataset itself keys = self.categories[name] logger.info('Creating column for feature "{}" with keys "{}"' .format(name, keys)) columns.append(SparseColumn(name, keys=keys, type=mapped_type)) elif is_numeric(ftype) or is_bool(ftype): logger.info('Creating column for numerical feature "{}"' .format(name)) columns.append(NumericColumn(name, type=mapped_type)) else: raise RuntimeError('Unknown column type "{}" for column "{}"' .format(name, ftype)) # Add amenities column am_keys = self.hardcoded_buckets['amenities'] \ if 'amenities' in self.hardcoded_buckets \ else self.amenities_list logger.info('Creating column for "amenities" with keys {}' .format(am_keys)) am_type = map_feature_type(np.dtype('object')) columns.append(SparseColumn('amenities', keys=am_keys, type=am_type)) # Image-specific columns columns += [ ImageColumn('image', format='JPEG'), NumericColumn('height', type=map_feature_type(np.dtype('int'))), NumericColumn('width', type=map_feature_type(np.dtype('int'))), SparseColumn('path', map_feature_type(np.dtype('object'))), SparseColumn('format', map_feature_type(np.dtype('object'))), SparseColumn('colorspace', map_feature_type(np.dtype('object'))) ] for c in columns: logger.info('Creating column for feature "{}"'.format(c.name)) return columns
def define_columns(self): # Image columns base_columns = [ NumericColumn('label', type=map_feature_type(np.dtype('int'))), ImageColumn('image', format='JPEG'), SparseColumn('colorspace', map_feature_type(np.dtype('object'))) ] # Categorical and numerical columns for each pixel position pixel_columns, deep_columns = [], [] for i in range(self.height): for j in range(self.width): # Wide column sparse_type = map_feature_type(np.dtype('object')) sparse_col = SparseColumn(name=self._get_pixel_name(i, j), type=sparse_type, keys=256) pixel_columns.append(sparse_col) # Deep column numeric_name = self._get_pixel_name(i, j) + '_num' numeric_type = map_feature_type(np.dtype('float')) numeric_col = NumericColumn(name=numeric_name, type=numeric_type) deep_columns.append(numeric_col) return base_columns + pixel_columns + deep_columns
def define_columns(self): cols = [] # Columns for i in range(self.features.shape[1]): current_col = NumericColumn(name=str(i), type=map_feature_type( np.dtype('float'))) cols.append(current_col) # Label cols.append( NumericColumn(name='class', type=map_feature_type(np.dtype('int')))) return cols
def define_columns(self): return [ NumericColumn('label', type=map_feature_type(np.dtype('int'))), ImageColumn('image', format='JPEG'), SparseColumn('colorspace', map_feature_type(np.dtype('object'))) ]
def define_columns(self): """ See base class """ columns = [] for i in range(self.features.shape[1]): numeric_type = map_feature_type(self.features[:, i].dtype) columns.append(NumericColumn(self.get_column_names()[i], type=numeric_type)) # Add column for index columns.append(NumericColumn('index', type=map_feature_type(np.int))) # Add column for label columns.append(NumericColumn(self.get_target_name(), type=map_feature_type(np.float))) return columns
def define_columns(self): return [ NumericColumn('label', type=map_feature_type(np.dtype('int'))), ImageColumn('image', format='JPEG'), ]