def test_download_train(self): rootdir = self.artifacts_dir.rpartition('/')[0] train = tecator.Tecator(root=rootdir, train=True, download=True, verbose=False) train = tecator.Tecator(root=rootdir, download=True, verbose=False) x_train, y_train = train.data, train.targets self.assertEqual(x_train.shape[0], 144) self.assertEqual(y_train.shape[0], 144) self.assertEqual(x_train.shape[1], 100)
def test_download_test(self): rootdir = self.artifacts_dir.rpartition('/')[0] test = tecator.Tecator(root=rootdir, train=False, verbose=False) x_test, y_test = test.data, test.targets self.assertEqual(x_test.shape[0], 71) self.assertEqual(y_test.shape[0], 71) self.assertEqual(x_test.shape[1], 100)
def test_loadable_with_dataloader(self): rootdir = self.artifacts_dir.rpartition('/')[0] test = tecator.Tecator(root=rootdir, train=False, verbose=False) _ = torch.utils.data.DataLoader(test, batch_size=64, shuffle=True)
def test_getitem(self): rootdir = self.artifacts_dir.rpartition('/')[0] test = tecator.Tecator(root=rootdir, train=False, verbose=False) x, y = test[0] self.assertEqual(x.shape[0], 100) self.assertIsInstance(y, int)
def test_class_to_idx(self): rootdir = self.artifacts_dir.rpartition('/')[0] test = tecator.Tecator(root=rootdir, train=False, verbose=False) _ = test.class_to_idx
def test_repr(self): rootdir = self.artifacts_dir.rpartition('/')[0] train = tecator.Tecator(rootdir, download=True, verbose=True) self.assertTrue('Split: Train' in train.__repr__())
def test_download_caching(self): rootdir = self.artifacts_dir.rpartition('/')[0] _ = tecator.Tecator(rootdir, download=True, verbose=False) _ = tecator.Tecator(rootdir, download=False, verbose=False)
def test_download_false(self): rootdir = self.artifacts_dir.rpartition('/')[0] self._remove_artifacts() with self.assertRaises(RuntimeError): _ = tecator.Tecator(rootdir, download=False)