def user_provenance(self, document: ProvDocument) -> None: """Add the user provenance.""" self.self_check() (username, fullname) = _whoami() if not self.full_name: self.full_name = fullname document.add_namespace(UUID) document.add_namespace(ORCID) document.add_namespace(FOAF) account = document.agent( ACCOUNT_UUID, { provM.PROV_TYPE: FOAF["OnlineAccount"], "prov:label": username, FOAF["accountName"]: username, }, ) user = document.agent( self.orcid or USER_UUID, { provM.PROV_TYPE: PROV["Person"], "prov:label": self.full_name, FOAF["name"]: self.full_name, FOAF["account"]: account, }, ) # cwltool may be started on the shell (directly by user), # by shell script (indirectly by user) # or from a different program # (which again is launched by any of the above) # # We can't tell in which way, but ultimately we're still # acting in behalf of that user (even if we might # get their name wrong!) document.actedOnBehalfOf(account, user)
class ProvenanceProfile: """ Provenance profile. Populated as the workflow runs. """ def __init__( self, research_object: "ResearchObject", full_name: str, host_provenance: bool, user_provenance: bool, orcid: str, fsaccess: StdFsAccess, run_uuid: Optional[uuid.UUID] = None, ) -> None: """Initialize the provenance profile.""" self.fsaccess = fsaccess self.orcid = orcid self.research_object = research_object self.folder = self.research_object.folder self.document = ProvDocument() self.host_provenance = host_provenance self.user_provenance = user_provenance self.engine_uuid = research_object.engine_uuid # type: str self.add_to_manifest = self.research_object.add_to_manifest if self.orcid: _logger.debug("[provenance] Creator ORCID: %s", self.orcid) self.full_name = full_name if self.full_name: _logger.debug("[provenance] Creator Full name: %s", self.full_name) self.workflow_run_uuid = run_uuid or uuid.uuid4() self.workflow_run_uri = self.workflow_run_uuid.urn # type: str self.generate_prov_doc() def __str__(self) -> str: """Represent this Provenvance profile as a string.""" return "ProvenanceProfile <{}> in <{}>".format( self.workflow_run_uri, self.research_object, ) def generate_prov_doc(self) -> Tuple[str, ProvDocument]: """Add basic namespaces.""" def host_provenance(document: ProvDocument) -> None: """Record host provenance.""" document.add_namespace(CWLPROV) document.add_namespace(UUID) document.add_namespace(FOAF) hostname = getfqdn() # won't have a foaf:accountServiceHomepage for unix hosts, but # we can at least provide hostname document.agent( ACCOUNT_UUID, { PROV_TYPE: FOAF["OnlineAccount"], "prov:location": hostname, CWLPROV["hostname"]: hostname, }, ) self.cwltool_version = "cwltool %s" % versionstring().split()[-1] self.document.add_namespace("wfprov", "http://purl.org/wf4ever/wfprov#") # document.add_namespace('prov', 'http://www.w3.org/ns/prov#') self.document.add_namespace("wfdesc", "http://purl.org/wf4ever/wfdesc#") # TODO: Make this ontology. For now only has cwlprov:image self.document.add_namespace("cwlprov", "https://w3id.org/cwl/prov#") self.document.add_namespace("foaf", "http://xmlns.com/foaf/0.1/") self.document.add_namespace("schema", "http://schema.org/") self.document.add_namespace("orcid", "https://orcid.org/") self.document.add_namespace("id", "urn:uuid:") # NOTE: Internet draft expired 2004-03-04 (!) # https://tools.ietf.org/html/draft-thiemann-hash-urn-01 # TODO: Change to nih:sha-256; hashes # https://tools.ietf.org/html/rfc6920#section-7 self.document.add_namespace("data", "urn:hash::sha1:") # Also needed for docker images self.document.add_namespace(SHA256, "nih:sha-256;") # info only, won't really be used by prov as sub-resources use / self.document.add_namespace("researchobject", self.research_object.base_uri) # annotations self.metadata_ns = self.document.add_namespace( "metadata", self.research_object.base_uri + METADATA + "/") # Pre-register provenance directory so we can refer to its files self.provenance_ns = self.document.add_namespace( "provenance", self.research_object.base_uri + posix_path(PROVENANCE) + "/") ro_identifier_workflow = self.research_object.base_uri + "workflow/packed.cwl#" self.wf_ns = self.document.add_namespace("wf", ro_identifier_workflow) ro_identifier_input = (self.research_object.base_uri + "workflow/primary-job.json#") self.document.add_namespace("input", ro_identifier_input) # More info about the account (e.g. username, fullname) # may or may not have been previously logged by user_provenance() # .. but we always know cwltool was launched (directly or indirectly) # by a user account, as cwltool is a command line tool account = self.document.agent(ACCOUNT_UUID) if self.orcid or self.full_name: person = {PROV_TYPE: PROV["Person"], "prov:type": SCHEMA["Person"]} if self.full_name: person["prov:label"] = self.full_name person["foaf:name"] = self.full_name person["schema:name"] = self.full_name else: # TODO: Look up name from ORCID API? pass agent = self.document.agent(self.orcid or uuid.uuid4().urn, person) self.document.actedOnBehalfOf(account, agent) else: if self.host_provenance: host_provenance(self.document) if self.user_provenance: self.research_object.user_provenance(self.document) # The execution of cwltool wfengine = self.document.agent( self.engine_uuid, { PROV_TYPE: PROV["SoftwareAgent"], "prov:type": WFPROV["WorkflowEngine"], "prov:label": self.cwltool_version, }, ) # FIXME: This datetime will be a bit too delayed, we should # capture when cwltool.py earliest started? self.document.wasStartedBy(wfengine, None, account, datetime.datetime.now()) # define workflow run level activity self.document.activity( self.workflow_run_uri, datetime.datetime.now(), None, { PROV_TYPE: WFPROV["WorkflowRun"], "prov:label": "Run of workflow/packed.cwl#main", }, ) # association between SoftwareAgent and WorkflowRun main_workflow = "wf:main" self.document.wasAssociatedWith(self.workflow_run_uri, self.engine_uuid, main_workflow) self.document.wasStartedBy(self.workflow_run_uri, None, self.engine_uuid, datetime.datetime.now()) return (self.workflow_run_uri, self.document) def evaluate( self, process: Process, job: JobsType, job_order_object: CWLObjectType, research_obj: "ResearchObject", ) -> None: """Evaluate the nature of job.""" if not hasattr(process, "steps"): # record provenance of independent commandline tool executions self.prospective_prov(job) customised_job = copy_job_order(job, job_order_object) self.used_artefacts(customised_job, self.workflow_run_uri) research_obj.create_job(customised_job) elif hasattr(job, "workflow"): # record provenance of workflow executions self.prospective_prov(job) customised_job = copy_job_order(job, job_order_object) self.used_artefacts(customised_job, self.workflow_run_uri) def record_process_start( self, process: Process, job: JobsType, process_run_id: Optional[str] = None) -> Optional[str]: if not hasattr(process, "steps"): process_run_id = self.workflow_run_uri elif not hasattr(job, "workflow"): # commandline tool execution as part of workflow name = "" if isinstance(job, (CommandLineJob, JobBase, WorkflowJob)): name = job.name process_name = urllib.parse.quote(name, safe=":/,#") process_run_id = self.start_process(process_name, datetime.datetime.now()) return process_run_id def start_process( self, process_name: str, when: datetime.datetime, process_run_id: Optional[str] = None, ) -> str: """Record the start of each Process.""" if process_run_id is None: process_run_id = uuid.uuid4().urn prov_label = "Run of workflow/packed.cwl#main/" + process_name self.document.activity( process_run_id, None, None, { PROV_TYPE: WFPROV["ProcessRun"], PROV_LABEL: prov_label }, ) self.document.wasAssociatedWith(process_run_id, self.engine_uuid, str("wf:main/" + process_name)) self.document.wasStartedBy(process_run_id, None, self.workflow_run_uri, when, None, None) return process_run_id def record_process_end( self, process_name: str, process_run_id: str, outputs: Union[CWLObjectType, MutableSequence[CWLObjectType], None], when: datetime.datetime, ) -> None: self.generate_output_prov(outputs, process_run_id, process_name) self.document.wasEndedBy(process_run_id, None, self.workflow_run_uri, when) def declare_file( self, value: CWLObjectType) -> Tuple[ProvEntity, ProvEntity, str]: if value["class"] != "File": raise ValueError("Must have class:File: %s" % value) # Need to determine file hash aka RO filename entity = None # type: Optional[ProvEntity] checksum = None if "checksum" in value: csum = cast(str, value["checksum"]) (method, checksum) = csum.split("$", 1) if method == SHA1 and self.research_object.has_data_file(checksum): entity = self.document.entity("data:" + checksum) if not entity and "location" in value: location = str(value["location"]) # If we made it here, we'll have to add it to the RO with self.fsaccess.open(location, "rb") as fhandle: relative_path = self.research_object.add_data_file(fhandle) # FIXME: This naively relies on add_data_file setting hash as filename checksum = PurePath(relative_path).name entity = self.document.entity("data:" + checksum, {PROV_TYPE: WFPROV["Artifact"]}) if "checksum" not in value: value["checksum"] = f"{SHA1}${checksum}" if not entity and "contents" in value: # Anonymous file, add content as string entity, checksum = self.declare_string(cast( str, value["contents"])) # By here one of them should have worked! if not entity or not checksum: raise ValueError( "class:File but missing checksum/location/content: %r" % value) # Track filename and extension, this is generally useful only for # secondaryFiles. Note that multiple uses of a file might thus record # different names for the same entity, so we'll # make/track a specialized entity by UUID file_id = value.setdefault("@id", uuid.uuid4().urn) # A specialized entity that has just these names file_entity = self.document.entity( file_id, [(PROV_TYPE, WFPROV["Artifact"]), (PROV_TYPE, WF4EVER["File"])], ) # type: ProvEntity if "basename" in value: file_entity.add_attributes( {CWLPROV["basename"]: value["basename"]}) if "nameroot" in value: file_entity.add_attributes( {CWLPROV["nameroot"]: value["nameroot"]}) if "nameext" in value: file_entity.add_attributes({CWLPROV["nameext"]: value["nameext"]}) self.document.specializationOf(file_entity, entity) # Check for secondaries for sec in cast(MutableSequence[CWLObjectType], value.get("secondaryFiles", [])): # TODO: Record these in a specializationOf entity with UUID? if sec["class"] == "File": (sec_entity, _, _) = self.declare_file(sec) elif sec["class"] == "Directory": sec_entity = self.declare_directory(sec) else: raise ValueError(f"Got unexpected secondaryFiles value: {sec}") # We don't know how/when/where the secondary file was generated, # but CWL convention is a kind of summary/index derived # from the original file. As its generally in a different format # then prov:Quotation is not appropriate. self.document.derivation( sec_entity, file_entity, other_attributes={PROV["type"]: CWLPROV["SecondaryFile"]}, ) return file_entity, entity, checksum def declare_directory(self, value: CWLObjectType) -> ProvEntity: """Register any nested files/directories.""" # FIXME: Calculate a hash-like identifier for directory # so we get same value if it's the same filenames/hashes # in a different location. # For now, mint a new UUID to identify this directory, but # attempt to keep it inside the value dictionary dir_id = cast(str, value.setdefault("@id", uuid.uuid4().urn)) # New annotation file to keep the ORE Folder listing ore_doc_fn = dir_id.replace("urn:uuid:", "directory-") + ".ttl" dir_bundle = self.document.bundle(self.metadata_ns[ore_doc_fn]) coll = self.document.entity( dir_id, [ (PROV_TYPE, WFPROV["Artifact"]), (PROV_TYPE, PROV["Collection"]), (PROV_TYPE, PROV["Dictionary"]), (PROV_TYPE, RO["Folder"]), ], ) # ORE description of ro:Folder, saved separately coll_b = dir_bundle.entity( dir_id, [(PROV_TYPE, RO["Folder"]), (PROV_TYPE, ORE["Aggregation"])], ) self.document.mentionOf(dir_id + "#ore", dir_id, dir_bundle.identifier) # dir_manifest = dir_bundle.entity( # dir_bundle.identifier, {PROV["type"]: ORE["ResourceMap"], # ORE["describes"]: coll_b.identifier}) coll_attribs = [(ORE["isDescribedBy"], dir_bundle.identifier)] coll_b_attribs = [] # type: List[Tuple[Identifier, ProvEntity]] # FIXME: .listing might not be populated yet - hopefully # a later call to this method will sort that is_empty = True if "listing" not in value: get_listing(self.fsaccess, value) for entry in cast(MutableSequence[CWLObjectType], value.get("listing", [])): is_empty = False # Declare child-artifacts entity = self.declare_artefact(entry) self.document.membership(coll, entity) # Membership relation aka our ORE Proxy m_id = uuid.uuid4().urn m_entity = self.document.entity(m_id) m_b = dir_bundle.entity(m_id) # PROV-O style Dictionary # https://www.w3.org/TR/prov-dictionary/#dictionary-ontological-definition # ..as prov.py do not currently allow PROV-N extensions # like hadDictionaryMember(..) m_entity.add_asserted_type(PROV["KeyEntityPair"]) m_entity.add_attributes({ PROV["pairKey"]: entry["basename"], PROV["pairEntity"]: entity, }) # As well as a being a # http://wf4ever.github.io/ro/2016-01-28/ro/#FolderEntry m_b.add_asserted_type(RO["FolderEntry"]) m_b.add_asserted_type(ORE["Proxy"]) m_b.add_attributes({ RO["entryName"]: entry["basename"], ORE["proxyIn"]: coll, ORE["proxyFor"]: entity, }) coll_attribs.append((PROV["hadDictionaryMember"], m_entity)) coll_b_attribs.append((ORE["aggregates"], m_b)) coll.add_attributes(coll_attribs) coll_b.add_attributes(coll_b_attribs) # Also Save ORE Folder as annotation metadata ore_doc = ProvDocument() ore_doc.add_namespace(ORE) ore_doc.add_namespace(RO) ore_doc.add_namespace(UUID) ore_doc.add_bundle(dir_bundle) ore_doc = ore_doc.flattened() ore_doc_path = str(PurePosixPath(METADATA, ore_doc_fn)) with self.research_object.write_bag_file( ore_doc_path) as provenance_file: ore_doc.serialize(provenance_file, format="rdf", rdf_format="turtle") self.research_object.add_annotation(dir_id, [ore_doc_fn], ORE["isDescribedBy"].uri) if is_empty: # Empty directory coll.add_asserted_type(PROV["EmptyCollection"]) coll.add_asserted_type(PROV["EmptyDictionary"]) self.research_object.add_uri(coll.identifier.uri) return coll def declare_string(self, value: str) -> Tuple[ProvEntity, str]: """Save as string in UTF-8.""" byte_s = BytesIO(str(value).encode(ENCODING)) data_file = self.research_object.add_data_file(byte_s, content_type=TEXT_PLAIN) checksum = PurePosixPath(data_file).name # FIXME: Don't naively assume add_data_file uses hash in filename! data_id = "data:%s" % PurePosixPath(data_file).stem entity = self.document.entity(data_id, { PROV_TYPE: WFPROV["Artifact"], PROV_VALUE: str(value) }) # type: ProvEntity return entity, checksum def declare_artefact(self, value: Optional[CWLOutputType]) -> ProvEntity: """Create data artefact entities for all file objects.""" if value is None: # FIXME: If this can happen in CWL, we'll # need a better way to represent this in PROV return self.document.entity(CWLPROV["None"], {PROV_LABEL: "None"}) if isinstance(value, (bool, int, float)): # Typically used in job documents for flags # FIXME: Make consistent hash URIs for these # that somehow include the type # (so "1" != 1 != "1.0" != true) entity = self.document.entity(uuid.uuid4().urn, {PROV_VALUE: value}) self.research_object.add_uri(entity.identifier.uri) return entity if isinstance(value, (str, str)): (entity, _) = self.declare_string(value) return entity if isinstance(value, bytes): # If we got here then we must be in Python 3 byte_s = BytesIO(value) data_file = self.research_object.add_data_file(byte_s) # FIXME: Don't naively assume add_data_file uses hash in filename! data_id = "data:%s" % PurePosixPath(data_file).stem return self.document.entity( data_id, { PROV_TYPE: WFPROV["Artifact"], PROV_VALUE: str(value) }, ) if isinstance(value, MutableMapping): if "@id" in value: # Already processed this value, but it might not be in this PROV entities = self.document.get_record(value["@id"]) if entities: return entities[0] # else, unknown in PROV, re-add below as if it's fresh # Base case - we found a File we need to update if value.get("class") == "File": (entity, _, _) = self.declare_file(value) value["@id"] = entity.identifier.uri return entity if value.get("class") == "Directory": entity = self.declare_directory(value) value["@id"] = entity.identifier.uri return entity coll_id = value.setdefault("@id", uuid.uuid4().urn) # some other kind of dictionary? # TODO: also Save as JSON coll = self.document.entity( coll_id, [ (PROV_TYPE, WFPROV["Artifact"]), (PROV_TYPE, PROV["Collection"]), (PROV_TYPE, PROV["Dictionary"]), ], ) if value.get("class"): _logger.warning("Unknown data class %s.", value["class"]) # FIXME: The class might be "http://example.com/somethingelse" coll.add_asserted_type(CWLPROV[value["class"]]) # Let's iterate and recurse coll_attribs = [] # type: List[Tuple[Identifier, ProvEntity]] for (key, val) in value.items(): v_ent = self.declare_artefact(val) self.document.membership(coll, v_ent) m_entity = self.document.entity(uuid.uuid4().urn) # Note: only support PROV-O style dictionary # https://www.w3.org/TR/prov-dictionary/#dictionary-ontological-definition # as prov.py do not easily allow PROV-N extensions m_entity.add_asserted_type(PROV["KeyEntityPair"]) m_entity.add_attributes({ PROV["pairKey"]: str(key), PROV["pairEntity"]: v_ent }) coll_attribs.append((PROV["hadDictionaryMember"], m_entity)) coll.add_attributes(coll_attribs) self.research_object.add_uri(coll.identifier.uri) return coll # some other kind of Collection? # TODO: also save as JSON try: members = [] for each_input_obj in iter(value): # Recurse and register any nested objects e = self.declare_artefact(each_input_obj) members.append(e) # If we reached this, then we were allowed to iterate coll = self.document.entity( uuid.uuid4().urn, [ (PROV_TYPE, WFPROV["Artifact"]), (PROV_TYPE, PROV["Collection"]), ], ) if not members: coll.add_asserted_type(PROV["EmptyCollection"]) else: for member in members: # FIXME: This won't preserve order, for that # we would need to use PROV.Dictionary # with numeric keys self.document.membership(coll, member) self.research_object.add_uri(coll.identifier.uri) # FIXME: list value does not support adding "@id" return coll except TypeError: _logger.warning("Unrecognized type %s of %r", type(value), value) # Let's just fall back to Python repr() entity = self.document.entity(uuid.uuid4().urn, {PROV_LABEL: repr(value)}) self.research_object.add_uri(entity.identifier.uri) return entity def used_artefacts( self, job_order: Union[CWLObjectType, List[CWLObjectType]], process_run_id: str, name: Optional[str] = None, ) -> None: """Add used() for each data artefact.""" if isinstance(job_order, list): for entry in job_order: self.used_artefacts(entry, process_run_id, name) else: # FIXME: Use workflow name in packed.cwl, "main" is wrong for nested workflows base = "main" if name is not None: base += "/" + name for key, value in job_order.items(): prov_role = self.wf_ns[f"{base}/{key}"] try: entity = self.declare_artefact(value) self.document.used( process_run_id, entity, datetime.datetime.now(), None, {"prov:role": prov_role}, ) except OSError: pass def generate_output_prov( self, final_output: Union[CWLObjectType, MutableSequence[CWLObjectType], None], process_run_id: Optional[str], name: Optional[str], ) -> None: """Call wasGeneratedBy() for each output,copy the files into the RO.""" if isinstance(final_output, MutableSequence): for entry in final_output: self.generate_output_prov(entry, process_run_id, name) elif final_output is not None: # Timestamp should be created at the earliest timestamp = datetime.datetime.now() # For each output, find/register the corresponding # entity (UUID) and document it as generated in # a role corresponding to the output for output, value in final_output.items(): entity = self.declare_artefact(value) if name is not None: name = urllib.parse.quote(str(name), safe=":/,#") # FIXME: Probably not "main" in nested workflows role = self.wf_ns[f"main/{name}/{output}"] else: role = self.wf_ns["main/%s" % output] if not process_run_id: process_run_id = self.workflow_run_uri self.document.wasGeneratedBy(entity, process_run_id, timestamp, None, {"prov:role": role}) def prospective_prov(self, job: JobsType) -> None: """Create prospective prov recording as wfdesc prov:Plan.""" if not isinstance(job, WorkflowJob): # direct command line tool execution self.document.entity( "wf:main", { PROV_TYPE: WFDESC["Process"], "prov:type": PROV["Plan"], "prov:label": "Prospective provenance", }, ) return self.document.entity( "wf:main", { PROV_TYPE: WFDESC["Workflow"], "prov:type": PROV["Plan"], "prov:label": "Prospective provenance", }, ) for step in job.steps: stepnametemp = "wf:main/" + str(step.name)[5:] stepname = urllib.parse.quote(stepnametemp, safe=":/,#") provstep = self.document.entity( stepname, { PROV_TYPE: WFDESC["Process"], "prov:type": PROV["Plan"] }, ) self.document.entity( "wf:main", { "wfdesc:hasSubProcess": provstep, "prov:label": "Prospective provenance", }, ) # TODO: Declare roles/parameters as well def activity_has_provenance(self, activity, prov_ids): # type: (str, List[Identifier]) -> None """Add http://www.w3.org/TR/prov-aq/ relations to nested PROV files.""" # NOTE: The below will only work if the corresponding metadata/provenance arcp URI # is a pre-registered namespace in the PROV Document attribs = [(PROV["has_provenance"], prov_id) for prov_id in prov_ids] self.document.activity(activity, other_attributes=attribs) # Tip: we can't use https://www.w3.org/TR/prov-links/#term-mention # as prov:mentionOf() is only for entities, not activities uris = [i.uri for i in prov_ids] self.research_object.add_annotation(activity, uris, PROV["has_provenance"].uri) def finalize_prov_profile(self, name): # type: (Optional[str]) -> List[Identifier] """Transfer the provenance related files to the RO.""" # NOTE: Relative posix path if name is None: # main workflow, fixed filenames filename = "primary.cwlprov" else: # ASCII-friendly filename, avoiding % as we don't want %2520 in manifest.json wf_name = urllib.parse.quote(str(name), safe="").replace("%", "_") # Note that the above could cause overlaps for similarly named # workflows, but that's OK as we'll also include run uuid # which also covers thhe case of this step being run in # multiple places or iterations filename = f"{wf_name}.{self.workflow_run_uuid}.cwlprov" basename = str(PurePosixPath(PROVENANCE) / filename) # TODO: Also support other profiles than CWLProv, e.g. ProvOne # list of prov identifiers of provenance files prov_ids = [] # https://www.w3.org/TR/prov-xml/ with self.research_object.write_bag_file(basename + ".xml") as provenance_file: self.document.serialize(provenance_file, format="xml", indent=4) prov_ids.append(self.provenance_ns[filename + ".xml"]) # https://www.w3.org/TR/prov-n/ with self.research_object.write_bag_file(basename + ".provn") as provenance_file: self.document.serialize(provenance_file, format="provn", indent=2) prov_ids.append(self.provenance_ns[filename + ".provn"]) # https://www.w3.org/Submission/prov-json/ with self.research_object.write_bag_file(basename + ".json") as provenance_file: self.document.serialize(provenance_file, format="json", indent=2) prov_ids.append(self.provenance_ns[filename + ".json"]) # "rdf" aka https://www.w3.org/TR/prov-o/ # which can be serialized to ttl/nt/jsonld (and more!) # https://www.w3.org/TR/turtle/ with self.research_object.write_bag_file(basename + ".ttl") as provenance_file: self.document.serialize(provenance_file, format="rdf", rdf_format="turtle") prov_ids.append(self.provenance_ns[filename + ".ttl"]) # https://www.w3.org/TR/n-triples/ with self.research_object.write_bag_file(basename + ".nt") as provenance_file: self.document.serialize(provenance_file, format="rdf", rdf_format="ntriples") prov_ids.append(self.provenance_ns[filename + ".nt"]) # https://www.w3.org/TR/json-ld/ # TODO: Use a nice JSON-LD context # see also https://eprints.soton.ac.uk/395985/ # 404 Not Found on https://provenance.ecs.soton.ac.uk/prov.jsonld :( with self.research_object.write_bag_file(basename + ".jsonld") as provenance_file: self.document.serialize(provenance_file, format="rdf", rdf_format="json-ld") prov_ids.append(self.provenance_ns[filename + ".jsonld"]) _logger.debug("[provenance] added provenance: %s", prov_ids) return prov_ids
def primer_example(): # https://github.com/lucmoreau/ProvToolbox/blob/master/prov-n/src/test/resources/prov/primer.pn # =========================================================================== # document g = ProvDocument() # prefix ex <http://example/> # prefix dcterms <http://purl.org/dc/terms/> # prefix foaf <http://xmlns.com/foaf/0.1/> ex = Namespace( "ex", "http://example/" ) # namespaces do not need to be explicitly added to a document g.add_namespace("dcterms", "http://purl.org/dc/terms/") g.add_namespace("foaf", "http://xmlns.com/foaf/0.1/") # entity(ex:article, [dcterms:title="Crime rises in cities"]) # first time the ex namespace was used, it is added to the document automatically g.entity(ex["article"], {"dcterms:title": "Crime rises in cities"}) # entity(ex:articleV1) g.entity(ex["articleV1"]) # entity(ex:articleV2) g.entity(ex["articleV2"]) # entity(ex:dataSet1) g.entity(ex["dataSet1"]) # entity(ex:dataSet2) g.entity(ex["dataSet2"]) # entity(ex:regionList) g.entity(ex["regionList"]) # entity(ex:composition) g.entity(ex["composition"]) # entity(ex:chart1) g.entity(ex["chart1"]) # entity(ex:chart2) g.entity(ex["chart2"]) # entity(ex:blogEntry) g.entity(ex["blogEntry"]) # activity(ex:compile) g.activity( "ex:compile") # since ex is registered, it can be used like this # activity(ex:compile2) g.activity("ex:compile2") # activity(ex:compose) g.activity("ex:compose") # activity(ex:correct, 2012-03-31T09:21:00, 2012-04-01T15:21:00) g.activity("ex:correct", "2012-03-31T09:21:00", "2012-04-01T15:21:00") # date time can be provided as strings # activity(ex:illustrate) g.activity("ex:illustrate") # used(ex:compose, ex:dataSet1, -, [ prov:role = "ex:dataToCompose"]) g.used("ex:compose", "ex:dataSet1", other_attributes={"prov:role": "ex:dataToCompose"}) # used(ex:compose, ex:regionList, -, [ prov:role = "ex:regionsToAggregateBy"]) g.used( "ex:compose", "ex:regionList", other_attributes={"prov:role": "ex:regionsToAggregateBy"}, ) # wasGeneratedBy(ex:composition, ex:compose, -) g.wasGeneratedBy("ex:composition", "ex:compose") # used(ex:illustrate, ex:composition, -) g.used("ex:illustrate", "ex:composition") # wasGeneratedBy(ex:chart1, ex:illustrate, -) g.wasGeneratedBy("ex:chart1", "ex:illustrate") # wasGeneratedBy(ex:chart1, ex:compile, 2012-03-02T10:30:00) g.wasGeneratedBy("ex:chart1", "ex:compile", "2012-03-02T10:30:00") # wasGeneratedBy(ex:chart2, ex:compile2, 2012-04-01T15:21:00) # # # agent(ex:derek, [ prov:type="prov:Person", foaf:givenName = "Derek", # foaf:mbox= "<mailto:[email protected]>"]) g.agent( "ex:derek", { "prov:type": PROV["Person"], "foaf:givenName": "Derek", "foaf:mbox": "<mailto:[email protected]>", }, ) # wasAssociatedWith(ex:compose, ex:derek, -) g.wasAssociatedWith("ex:compose", "ex:derek") # wasAssociatedWith(ex:illustrate, ex:derek, -) g.wasAssociatedWith("ex:illustrate", "ex:derek") # # agent(ex:chartgen, [ prov:type="prov:Organization", # foaf:name = "Chart Generators Inc"]) g.agent( "ex:chartgen", { "prov:type": PROV["Organization"], "foaf:name": "Chart Generators Inc" }, ) # actedOnBehalfOf(ex:derek, ex:chartgen, ex:compose) g.actedOnBehalfOf("ex:derek", "ex:chartgen", "ex:compose") # wasAttributedTo(ex:chart1, ex:derek) g.wasAttributedTo("ex:chart1", "ex:derek") # wasGeneratedBy(ex:dataSet2, ex:correct, -) g.wasGeneratedBy("ex:dataSet2", "ex:correct") # used(ex:correct, ex:dataSet1, -) g.used("ex:correct", "ex:dataSet1") # wasDerivedFrom(ex:dataSet2, ex:dataSet1, [prov:type='prov:Revision']) g.wasDerivedFrom("ex:dataSet2", "ex:dataSet1", other_attributes={"prov:type": PROV["Revision"]}) # wasDerivedFrom(ex:chart2, ex:dataSet2) g.wasDerivedFrom("ex:chart2", "ex:dataSet2") # wasDerivedFrom(ex:blogEntry, ex:article, [prov:type='prov:Quotation']) g.wasDerivedFrom("ex:blogEntry", "ex:article", other_attributes={"prov:type": PROV["Quotation"]}) # specializationOf(ex:articleV1, ex:article) g.specializationOf("ex:articleV1", "ex:article") # wasDerivedFrom(ex:articleV1, ex:dataSet1) g.wasDerivedFrom("ex:articleV1", "ex:dataSet1") # specializationOf(ex:articleV2, ex:article) g.specializationOf("ex:articleV2", "ex:article") # wasDerivedFrom(ex:articleV2, ex:dataSet2) g.wasDerivedFrom("ex:articleV2", "ex:dataSet2") # alternateOf(ex:articleV2, ex:articleV1) g.alternateOf("ex:articleV2", "ex:articleV1") # endDocument return g
def primer_example(): # https://github.com/lucmoreau/ProvToolbox/blob/master/prov-n/src/test/resources/prov/primer.pn #=========================================================================== # document g = ProvDocument() # prefix ex <http://example/> # prefix dcterms <http://purl.org/dc/terms/> # prefix foaf <http://xmlns.com/foaf/0.1/> ex = Namespace('ex', 'http://example/') # namespaces do not need to be explicitly added to a document g.add_namespace("dcterms", "http://purl.org/dc/terms/") g.add_namespace("foaf", "http://xmlns.com/foaf/0.1/") # entity(ex:article, [dcterms:title="Crime rises in cities"]) # first time the ex namespace was used, it is added to the document automatically g.entity(ex['article'], {'dcterms:title': "Crime rises in cities"}) # entity(ex:articleV1) g.entity(ex['articleV1']) # entity(ex:articleV2) g.entity(ex['articleV2']) # entity(ex:dataSet1) g.entity(ex['dataSet1']) # entity(ex:dataSet2) g.entity(ex['dataSet2']) # entity(ex:regionList) g.entity(ex['regionList']) # entity(ex:composition) g.entity(ex['composition']) # entity(ex:chart1) g.entity(ex['chart1']) # entity(ex:chart2) g.entity(ex['chart2']) # entity(ex:blogEntry) g.entity(ex['blogEntry']) # activity(ex:compile) g.activity('ex:compile') # since ex is registered, it can be used like this # activity(ex:compile2) g.activity('ex:compile2') # activity(ex:compose) g.activity('ex:compose') # activity(ex:correct, 2012-03-31T09:21:00, 2012-04-01T15:21:00) g.activity('ex:correct', '2012-03-31T09:21:00', '2012-04-01T15:21:00') # date time can be provided as strings # activity(ex:illustrate) g.activity('ex:illustrate') # used(ex:compose, ex:dataSet1, -, [ prov:role = "ex:dataToCompose"]) g.used('ex:compose', 'ex:dataSet1', other_attributes={'prov:role': "ex:dataToCompose"}) # used(ex:compose, ex:regionList, -, [ prov:role = "ex:regionsToAggregateBy"]) g.used('ex:compose', 'ex:regionList', other_attributes={'prov:role': "ex:regionsToAggregateBy"}) # wasGeneratedBy(ex:composition, ex:compose, -) g.wasGeneratedBy('ex:composition', 'ex:compose') # used(ex:illustrate, ex:composition, -) g.used('ex:illustrate', 'ex:composition') # wasGeneratedBy(ex:chart1, ex:illustrate, -) g.wasGeneratedBy('ex:chart1', 'ex:illustrate') # wasGeneratedBy(ex:chart1, ex:compile, 2012-03-02T10:30:00) g.wasGeneratedBy('ex:chart1', 'ex:compile', '2012-03-02T10:30:00') # wasGeneratedBy(ex:chart2, ex:compile2, 2012-04-01T15:21:00) # # # agent(ex:derek, [ prov:type="prov:Person", foaf:givenName = "Derek", # foaf:mbox= "<mailto:[email protected]>"]) g.agent('ex:derek', { 'prov:type': PROV["Person"], 'foaf:givenName': "Derek", 'foaf:mbox': "<mailto:[email protected]>" }) # wasAssociatedWith(ex:compose, ex:derek, -) g.wasAssociatedWith('ex:compose', 'ex:derek') # wasAssociatedWith(ex:illustrate, ex:derek, -) g.wasAssociatedWith('ex:illustrate', 'ex:derek') # # agent(ex:chartgen, [ prov:type="prov:Organization", # foaf:name = "Chart Generators Inc"]) g.agent('ex:chartgen', {'prov:type': PROV["Organization"], 'foaf:name': "Chart Generators Inc"}) # actedOnBehalfOf(ex:derek, ex:chartgen, ex:compose) g.actedOnBehalfOf('ex:derek', 'ex:chartgen', 'ex:compose') # wasAttributedTo(ex:chart1, ex:derek) g.wasAttributedTo('ex:chart1', 'ex:derek') # wasGeneratedBy(ex:dataSet2, ex:correct, -) g.wasGeneratedBy('ex:dataSet2', 'ex:correct') # used(ex:correct, ex:dataSet1, -) g.used('ex:correct', 'ex:dataSet1') # wasDerivedFrom(ex:dataSet2, ex:dataSet1, [prov:type='prov:Revision']) g.wasDerivedFrom('ex:dataSet2', 'ex:dataSet1', other_attributes={'prov:type': PROV['Revision']}) # wasDerivedFrom(ex:chart2, ex:dataSet2) g.wasDerivedFrom('ex:chart2', 'ex:dataSet2') # wasDerivedFrom(ex:blogEntry, ex:article, [prov:type='prov:Quotation']) g.wasDerivedFrom('ex:blogEntry', 'ex:article', other_attributes={'prov:type': PROV['Quotation']}) # specializationOf(ex:articleV1, ex:article) g.specializationOf('ex:articleV1', 'ex:article') # wasDerivedFrom(ex:articleV1, ex:dataSet1) g.wasDerivedFrom('ex:articleV1', 'ex:dataSet1') # specializationOf(ex:articleV2, ex:article) g.specializationOf('ex:articleV2', 'ex:article') # wasDerivedFrom(ex:articleV2, ex:dataSet2) g.wasDerivedFrom('ex:articleV2', 'ex:dataSet2') # alternateOf(ex:articleV2, ex:articleV1) g.alternateOf('ex:articleV2', 'ex:articleV1') # endDocument return g
def to_prov(obj, namespace, service): """ :type obj: dict :rtype: prov.model.ProvDocument """ g = ProvDocument() ap = Namespace('aip', 'https://araport.org/provenance/') g.add_namespace("dcterms", "http://purl.org/dc/terms/") g.add_namespace("foaf", "http://xmlns.com/foaf/0.1/") vaughn = g.agent(ap['matthew_vaughn'], { 'prov:type': PROV["Person"], 'foaf:givenName': "Matthew Vaughn", 'foaf:mbox': "<mailto:[email protected]>" }) # Hard coded for now walter = g.agent(ap['walter_moreira'], { 'prov:type': PROV["Person"], 'foaf:givenName': "Walter Moreira", 'foaf:mbox': "<mailto:[email protected]>" }) utexas = g.agent(ap['university_of_texas'], { 'prov:type': PROV["Organization"], 'foaf:givenName': "University of Texas at Austin" }) g.actedOnBehalfOf(walter, utexas) g.actedOnBehalfOf(vaughn, utexas) adama_platform = g.agent( ap['adama_platform'], {'dcterms:title': "ADAMA", 'dcterms:description': "Araport Data And Microservices API", 'dcterms:language': "en-US", 'dcterms:identifier': "https://api.araport.org/community/v0.3/", 'dcterms:updated': "2015-04-17T09:44:56"}) g.wasGeneratedBy(adama_platform, walter) g.wasGeneratedBy(adama_platform, vaughn) iden = service_iden(namespace, service) srv = service_store[iden]['service'] adama_microservice = g.agent( ap[iden], {'dcterms:title': srv.name.title(), 'dcterms:description': srv.description, 'dcterms:language': "en-US", 'dcterms:identifier': api_url_for('service', namespace=namespace, service=service), 'dcterms:source': srv.git_repository }) g.used(adama_microservice, adama_platform, datetime.datetime.now()) for author in getattr(srv, 'authors', []): try: author_name = author['name'] author_email = author['email'] except KeyError: raise APIException( 'name and email are required in author field') author_agent = g.agent( ap[slugify(author_name)], {'prov:type': PROV['Person'], 'foaf:givenName': author_name, 'foaf:mbox': '<mailto:{}>'.format(author_email)}) sponsor_name = author.get('sponsor_organization_name', None) if sponsor_name: sponsor_agent = g.agent( ap[slugify(sponsor_name)], {'prov:type': PROV['Organization'], 'foaf:givenName': sponsor_name, 'dcterms:identifier': author.get('sponsor_uri', '')}) g.actedOnBehalfOf(author_agent, sponsor_agent) g.wasGeneratedBy(adama_microservice, author_agent, datetime.datetime.now()) sources_entities = process_sources(srv.sources, g, ap) for src in sources_entities: g.used(adama_microservice, src, datetime.datetime.now()) response = g.entity(ap['adama_response']) g.wasGeneratedBy(response, ap[srv.type], datetime.datetime.now()) g.used(ap[srv.type], adama_microservice, datetime.datetime.now()) return g
class Context(object): """ Context is a singlton storing all of the run specific data. """ def __init__(self): # Warning; # If new data is added with a site dimension the # clip exposure function may need to be updated # so the site data stays consistent. # -------------- These variables are saved ---- # If new variables are added the save functions # will need to be modified. # Latitude and longitude values of the exposure data # Has a site dimension self.exposure_lat = None self.exposure_long = None # Data with a site dimension # key - data name # value - A numpy array. First dimension is site. (0 axis) # Has a site dimension self.exposure_att = None # Data for aggregation across sites self.exposure_agg = None # # -------------- The above variables are saved ---- # key - intensity measure # value - One instance of RealisedVulnerabilityCurves. An att in this # class has a site dimension. self.exposure_vuln_curves = None # A dictionary of the vulnerability sets. # Not associated with exposures. # key - vulnerability set ID # value - vulnerability set instance self.vulnerability_sets = {} # A dictionary with keys being vulnerability_set_ids and # value being the exposure attribute who's values are vulnerability # function ID's. self.vul_function_titles = {} # A `prov.ProvDocument` to manage provenance information, including # adding required namespaces self.prov = ProvDocument() self.prov.set_default_namespace("") self.prov.add_namespace('prov', 'http://www.w3.org/ns/prov#') self.prov.add_namespace('xsd', 'http://www.w3.org/2001/XMLSchema#') self.prov.add_namespace('foaf', 'http://xmlns.com/foaf/0.1/') self.prov.add_namespace('void', 'http://vocab.deri.ie/void#') self.prov.add_namespace('dcterms', 'http://purl.org/dc/terms/') commit, branch, dt = misc.get_git_commit() # Create the fundamental software agent that is this code: self.prov.agent( ":hazimp", { "prov:type": "prov:SoftwareAgent", "prov:Revision": commit, "prov:branch": branch, "prov:date": dt }) self.prov.agent(f":{getpass.getuser()}", {"prov:type": "foaf:Person"}) self.prov.actedOnBehalfOf(":hazimp", f":{getpass.getuser()}") self.provlabel = '' def set_prov_label(self, label, title="HazImp analysis"): """ Set the qualified label for the provenance data """ self.provlabel = f":{label}" self.prov.activity(f":{label}", datetime.now().strftime(DATEFMT), None, { "dcterms:title": title, "prov:type": "void:Analysis" }) self.prov.wasAttributedTo(self.provlabel, ":hazimp") def get_site_shape(self): """ Get the numpy shape of sites the context is storing. It is based on the shape of exposure_long. :return: The numpy shape of sites the context is storing. """ if self.exposure_long is None: shape = (0) else: shape = self.exposure_long.shape return shape def clip_exposure(self, min_long, min_lat, max_long, max_lat): """ min_long, min_lat, max_long, max_lat Clip the exposure data so only the exposure values within the rectangle formed by max_lat, min_lat, max_long and min_long are included. Note: This must be called before the exposure_vuln_curves are determined, since the curves have a site dimension. """ assert self.exposure_vuln_curves is None bad_indexes = set() bad_indexes = bad_indexes.union( numpy.where(self.exposure_long < min_long)[0]) bad_indexes = bad_indexes.union( numpy.where(self.exposure_long > max_long)[0]) bad_indexes = bad_indexes.union( numpy.where(self.exposure_lat < min_lat)[0]) bad_indexes = bad_indexes.union( numpy.where(self.exposure_lat > max_lat)[0]) good_indexes = numpy.array(list( set(range(self.exposure_lat.size)).difference(bad_indexes)), dtype=int) if good_indexes.shape[0] == 0: self.exposure_lat = numpy.array([]) self.exposure_long = numpy.array([]) else: self.exposure_lat = self.exposure_lat[good_indexes] self.exposure_long = self.exposure_long[good_indexes] if isinstance(self.exposure_att, dict): for key in self.exposure_att: if good_indexes.shape[0] == 0: exp_att = numpy.array([]) else: exp_att = self.exposure_att[key][good_indexes] self.exposure_att[key] = exp_att else: self.exposure_att = self.exposure_att.take(good_indexes) def save_exposure_atts(self, filename, use_parallel=True): """ Save the exposure attributes, including latitude and longitude. The file type saved is based on the filename extension. Options '.npz': Save the arrays into a single file in uncompressed .npz format. :param use_parallel: Set to True for parallel behaviour Which is only node 0 writing to file. :param filename: The file to be written. :return write_dict: The whole dictionary, returned for testing. """ [filename, bucket_name, bucket_key] = \ misc.create_temp_file_path_for_s3(filename) s1 = self.prov.entity( ":HazImp output file", { "prov:label": "Full HazImp output file", "prov:type": "void:Dataset", "prov:atLocation": os.path.basename(filename) }) a1 = self.prov.activity(":SaveImpactData", datetime.now().strftime(DATEFMT), None) self.prov.wasGeneratedBy(s1, a1) self.prov.wasInformedBy(a1, self.provlabel) write_dict = self.exposure_att.copy() write_dict[EX_LAT] = self.exposure_lat write_dict[EX_LONG] = self.exposure_long if use_parallel: assert misc.INTID in write_dict write_dict = parallel.gather_dict(write_dict, write_dict[misc.INTID]) if parallel.STATE.rank == 0 or not use_parallel: if filename[-4:] == '.csv': save_csv(write_dict, filename) else: numpy.savez(filename, **write_dict) misc.upload_to_s3_if_applicable(filename, bucket_name, bucket_key) # The write_dict is returned for testing # When running in paralled this is a way of getting all # of the context info return write_dict def save_exposure_aggregation(self, filename, use_parallel=True): """ Save the aggregated exposure attributes. The file type saved is based on the filename extension. Options '.npz': Save the arrays into a single file in uncompressed .npz format. :param use_parallel: Set to True for parallel behaviour which is only node 0 writing to file. :param filename: The file to be written. :return write_dict: The whole dictionary, returned for testing. """ write_dict = self.exposure_agg.copy() s1 = self.prov.entity( ":Aggregated HazImp output file", { "prov:label": "Aggregated HazImp output file", "prov:type": "void:Dataset", "prov:atLocation": os.path.basename(filename) }) a1 = self.prov.activity(":SaveAggregatedImpactData", datetime.now().strftime(DATEFMT), None) self.prov.wasGeneratedBy(s1, a1) self.prov.wasInformedBy(a1, self.prov.activity(":AggregateLoss")) if parallel.STATE.rank == 0 or not use_parallel: if filename[-4:] == '.csv': save_csv_agg(write_dict, filename) else: numpy.savez(filename, **write_dict) # The write_dict is returned for testing # When running in paralled this is a way of getting all # of the context info return write_dict def save_aggregation(self, filename, boundaries, impactcode, boundarycode, categories, use_parallel=True): """ Save data aggregated to geospatial regions :param str filename: Destination filename :param bool use_parallel: True for parallel behaviout, which is only node 0 writing to file """ LOGGER.info("Saving aggregated data") boundaries = misc.download_file_from_s3_if_needed(boundaries) [filename, bucket_name, bucket_key] = \ misc.create_temp_file_path_for_s3(filename) write_dict = self.exposure_att.copy() dt = datetime.now().strftime(DATEFMT) atts = { "prov:type": "void:Dataset", "prov:atLocation": os.path.basename(boundaries), "prov:generatedAtTime": misc.get_file_mtime(boundaries), "void:boundary_code": boundarycode } bdyent = self.prov.entity(":Aggregation boundaries", atts) aggact = self.prov.activity(":AggregationByRegions", dt, None, {'prov:type': "Spatial aggregation"}) aggatts = { "prov:type": "void:Dataset", "prov:atLocation": os.path.basename(filename), "prov:generatedAtTime": dt } aggfileent = self.prov.entity(":AggregationFile", aggatts) self.prov.used(aggact, bdyent) self.prov.wasInformedBy(aggact, self.provlabel) self.prov.wasGeneratedBy(aggfileent, aggact) if parallel.STATE.rank == 0 or not use_parallel: aggregate.choropleth(write_dict, boundaries, impactcode, boundarycode, filename, categories) misc.upload_to_s3_if_applicable(filename, bucket_name, bucket_key) if (bucket_name is not None and bucket_key is not None and bucket_key.endswith('.shp')): [rootname, ext] = os.path.splitext(filename) base_bucket_key = bucket_key[:-len(ext)] misc.upload_to_s3_if_applicable(rootname + '.dbf', bucket_name, base_bucket_key + '.dbf') misc.upload_to_s3_if_applicable(rootname + '.shx', bucket_name, base_bucket_key + '.shx') misc.upload_to_s3_if_applicable(rootname + '.prj', bucket_name, base_bucket_key + '.prj') misc.upload_to_s3_if_applicable(rootname + '.cpg', bucket_name, base_bucket_key + '.cpg', True) else: pass def aggregate_loss(self, groupby=None, kwargs=None): """ Aggregate data by the `groupby` attribute, using the `kwargs` to perform any arithmetic aggregation on fields (e.g. summation, mean, etc.) :param str groupby: A column in the `DataFrame` that corresponds to regions by which to aggregate data :param dict kwargs: A `dict` with keys of valid column names (from the `DataFrame`) and values being lists of aggregation functions to apply to the columns. For example:: kwargs = {'REPLACEMENT_VALUE': ['mean', 'sum'], 'structural_loss_ratio': ['mean', 'std']} See https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#aggregation for more guidance on using aggregation with `DataFrames` """ LOGGER.info(f"Aggregating loss using {groupby} attribute") a1 = self.prov.activity(":AggregateLoss", datetime.now().strftime(DATEFMT), None, { "prov:type": "Aggregation", "void:aggregator": repr(groupby) }) self.prov.wasInformedBy(a1, self.provlabel) self.exposure_agg = aggregate.aggregate_loss_atts( self.exposure_att, groupby, kwargs) def categorise(self, bins, labels, field_name): """ Bin values into discrete intervals. :param list bins: Monotonically increasing array of bin edges, including the rightmost edge, allowing for non-uniform bin widths. :param labels: Specifies the labels for the returned bins. Must be the same length as the resulting bins. :param str field_name: Name of the new column in the `exposure_att` `DataFrame` """ for intensity_key in self.exposure_vuln_curves: vc = self.exposure_vuln_curves[intensity_key] lct = vc.loss_category_type LOGGER.info(f"Categorising {lct} values into {len(labels)} categories") self.exposure_att[field_name] = pd.cut(self.exposure_att[lct], bins, right=False, labels=labels) def tabulate(self, file_name, index=None, columns=None, aggfunc=None): """ Reshape data (produce a "pivot" table) based on column values. Uses unique values from specified `index` / `columns` to form axes of the resulting DataFrame, then writes to an Excel file. This function does not support data aggregation - multiple values will result in a MultiIndex in the columns. See https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.pivot_table.html for further details. Parameters ---------- file_name : destination for the pivot table index : column or list of columns Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values. columns : column, or list of the columns Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values. aggfunc : function, list of functions, dict, default numpy.mean If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves) If dict is passed, the key is column to aggregate and value is function or list of functions. """ if index not in self.exposure_att.columns: LOGGER.error(f"Cannot tabulate data using {index} as index") LOGGER.error(f"{index} is not an attribute of the exposure data") return if columns not in self.exposure_att.columns: LOGGER.error( f"Required attribute(s) {columns} not in the exposure data") LOGGER.error( "Maybe you need to run a categorise job before this one?") return dt = datetime.now().strftime(DATEFMT) a1 = self.prov.activity( ":Tabulate", dt, None, { "prov:type": "Tabulation", "void:aggregator": repr(index), "void:attributes": repr(columns), "void:aggregation": repr(aggfunc) }) tblatts = { "prov:type": "void:Dataset", "prov:atLocation": os.path.basename(file_name), "prov:generatedAtTime": dt } tblfileent = self.prov.entity(":TabulationFile", tblatts) self.pivot = self.exposure_att.pivot_table(index=index, columns=columns, aggfunc=aggfunc, fill_value=0) try: self.pivot.to_excel(file_name) except TypeError as te: LOGGER.error(te) raise except KeyError as ke: LOGGER.error(ke) raise except ValueError as ve: LOGGER.error(f"Unable to save tabulated data to {file_name}") LOGGER.error(ve) else: self.prov.wasGeneratedBy(tblfileent, a1) self.prov.wasInformedBy(a1, self.provlabel)
def get_provenance_history(uuid, normalized_provenance_dict): prov_doc = ProvDocument() # The 'prov' prefix is build-in namespace, no need to redefine here prov_doc.add_namespace(HUBMAP_NAMESPACE, 'https://hubmapconsortium.org/') # A bit validation if 'relationships' not in normalized_provenance_dict: raise LookupError( f'Missing "relationships" key from the normalized_provenance_dict for Entity of uuid: {uuid}' ) if 'nodes' not in normalized_provenance_dict: raise LookupError( f'Missing "nodes" key from the normalized_provenance_dict for Entity of uuid: {uuid}' ) # Pack the nodes into a dictionary using the uuid as key nodes_dict = {} for node in normalized_provenance_dict['nodes']: nodes_dict[node['uuid']] = node # Loop through the relationships and build the provenance document for rel_dict in normalized_provenance_dict['relationships']: # (Activity) - [ACTIVITY_OUTPUT] -> (Entity) if rel_dict['rel_data']['type'] == 'ACTIVITY_OUTPUT': activity_uuid = rel_dict['fromNode']['uuid'] entity_uuid = rel_dict['toNode']['uuid'] # (Entity) - [ACTIVITY_INPUT] -> (Activity) elif rel_dict['rel_data']['type'] == 'ACTIVITY_INPUT': entity_uuid = rel_dict['fromNode']['uuid'] activity_uuid = rel_dict['toNode']['uuid'] activity_node = nodes_dict[activity_uuid] entity_node = nodes_dict[entity_uuid] activity_uri = None entity_uri = None # Skip Lab nodes for agent and organization if entity_node['entity_type'] != 'Lab': # Get the agent information from the entity node agent_record = get_agent_record(entity_node) # Use 'created_by_user_sub' as agent ID if presents # Otherwise, fall back to use email by replacing @ and . created_by_user_sub_prov_key = f'{HUBMAP_NAMESPACE}:userUUID' created_by_user_email_prov_key = f'{HUBMAP_NAMESPACE}:userEmail' if created_by_user_sub_prov_key in agent_record: agent_id = agent_record[created_by_user_sub_prov_key] elif created_by_user_email_prov_key in agent_record: agent_id = str( agent_record[created_by_user_email_prov_key]).replace( '@', '-') agent_id = str(agent_id).replace('.', '-') else: msg = f"Both 'created_by_user_sub' and 'created_by_user_email' are missing form entity of uuid: {entity_node['uuid']}" logger.error(msg) raise LookupError(msg) # Build the agent uri agent_uri = build_uri(HUBMAP_NAMESPACE, 'agent', agent_id) # Only add the same agent once # Multiple entities can be associated to the same agent agent = prov_doc.get_record(agent_uri) if len(agent) == 0: doc_agent = prov_doc.agent(agent_uri, agent_record) else: doc_agent = agent[0] # Organization # Get the organization information from the entity node org_record = get_organization_record(entity_node) # Build the organization uri group_uuid_prov_key = f'{HUBMAP_NAMESPACE}:groupUUID' org_uri = build_uri(HUBMAP_NAMESPACE, 'organization', org_record[group_uuid_prov_key]) # Only add the same organization once # Multiple entities can be associated to different agents who are from the same organization org = prov_doc.get_record(org_uri) if len(org) == 0: doc_org = prov_doc.agent(org_uri, org_record) else: doc_org = org[0] # Build the activity uri activity_uri = build_uri(HUBMAP_NAMESPACE, 'activities', activity_node['uuid']) # Register activity if not already registered activity = prov_doc.get_record(activity_uri) if len(activity) == 0: # Shared attributes to be added to the PROV document activity_attributes = {'prov:type': 'Activity'} # Convert the timestampt integer to datetime string # Note: in our case, prov:startTime is the same as prov:endTime activity_time = timestamp_to_datetime( activity_node['created_timestamp']) # Add prefix to all other attributes for key in activity_node: prov_key = f'{HUBMAP_NAMESPACE}:{key}' # Use datetime string instead of timestamp integer if key == 'created_timestamp': activity_attributes[prov_key] = activity_time else: activity_attributes[prov_key] = activity_node[key] # Register activity doc_activity = prov_doc.activity(activity_uri, activity_time, activity_time, activity_attributes) # Relationship: the agent actedOnBehalfOf the org prov_doc.actedOnBehalfOf(doc_agent, doc_org, doc_activity) else: doc_activity = activity[0] # Build the entity uri entity_uri = build_uri(HUBMAP_NAMESPACE, 'entities', entity_node['uuid']) # Register entity is not already registered if len(prov_doc.get_record(entity_uri)) == 0: # Shared attributes to be added to the PROV document entity_attributes = {'prov:type': 'Entity'} # Add prefix to all other attributes for key in entity_node: # Entity property values can be list or dict, skip # And list and dict are unhashable types when calling `prov_doc.entity()` if not isinstance(entity_node[key], (list, dict)): prov_key = f'{HUBMAP_NAMESPACE}:{key}' # Use datetime string instead of timestamp integer if key in [ 'created_timestamp', 'last_modified_timestamp', 'published_timestamp' ]: entity_attributes[prov_key] = activity_time else: entity_attributes[prov_key] = entity_node[key] # Register entity prov_doc.entity(entity_uri, entity_attributes) # Build activity uri and entity uri if not already built # For the Lab nodes if activity_uri is None: activity_uri = build_uri(HUBMAP_NAMESPACE, 'activities', activity_node['uuid']) if entity_uri is None: entity_uri = build_uri(HUBMAP_NAMESPACE, 'entities', entity_node['uuid']) # The following relationships apply to all node including Lab entity nodes # (Activity) - [ACTIVITY_OUTPUT] -> (Entity) if rel_dict['rel_data']['type'] == 'ACTIVITY_OUTPUT': # Relationship: the entity wasGeneratedBy the activity prov_doc.wasGeneratedBy(entity_uri, activity_uri) # (Entity) - [ACTIVITY_INPUT] -> (Activity) elif rel_dict['rel_data']['type'] == 'ACTIVITY_INPUT': # Relationship: the activity used the entity prov_doc.used(activity_uri, entity_uri) # Format into json string based on the PROV-JSON Serialization # https://www.w3.org/Submission/prov-json/ serialized_json = prov_doc.serialize() return serialized_json
def example(): g = ProvDocument() # Local namespace # Doesnt exist yet so we are creating it ap = Namespace('aip', 'https://araport.org/provenance/') # Dublin Core g.add_namespace("dcterms", "http://purl.org/dc/terms/") # FOAF g.add_namespace("foaf", "http://xmlns.com/foaf/0.1/") # Add sponsors and contributors as Agents # ap['matthew_vaughn'] # aip:matthew_vaughn # https://araport.org/provenance/:matthew_vaughn # Learn this from a call to profiles service? Adds a dependency on Agave so I am open to figuring out another way me = g.agent( ap['matthew_vaughn'], { 'prov:type': PROV["Person"], 'foaf:givenName': "Matthew Vaughn", 'foaf:mbox': "<mailto:[email protected]>" }) # Hard coded for now walter = g.agent( ap['walter_moreira'], { 'prov:type': PROV["Person"], 'foaf:givenName': "Walter Moreira", 'foaf:mbox': "<mailto:[email protected]>" }) utexas = g.agent( ap['university_of_texas'], { 'prov:type': PROV["Organization"], 'foaf:givenName': "University of Texas at Austin" }) # Set delegation to our host University # We may have trouble doing this for other users since we don't always capture their host instituion g.actedOnBehalfOf(walter, utexas) g.actedOnBehalfOf(me, utexas) # Include the ADAMA platform as an Agent and set attribution # dcterms:title and dcterms:description are hardcoded # dcterms:language is hard-coded # dcterms:source is the URI of the public git source repository for ADAMA # "dcterms:updated": "2015-04-17T09:44:56" - this would actually be the date ADAMA was updated adama_platform = g.agent( ap['adama_platform'], { 'dcterms:title': "ADAMA", 'dcterms:description': "Araport Data and Microservices API", 'dcterms:language': "en-US", 'dcterms:identifier': "https://api.araport.org/community/v0.3/", 'dcterms:updated': "2015-04-17T09:44:56" }) g.wasGeneratedBy(adama_platform, walter) # Include the ADAMA microservice as an Agent and set attribution+delegation # dcterms:title and dcterms:description are inherited from the service's metadata # dcterms:language is hard-coded # dcterms:identifier is the deployment URI for the service # dcterms:source is the URI of the public git source repository. The URL in this example is just a dummy # # The name for each microservice should be unique. We've decided to # use the combination of namespace, service name, and version microservice_name = 'mwvaughn/bar_annotation_v1.0.0' adama_microservice = g.agent( ap[microservice_name], { 'dcterms:title': "BAR Annotation Service", 'dcterms:description': "Returns annotation from locus ID", 'dcterms:language': "en-US", 'dcterms:identifier': "https://api.araport.org/community/v0.3/mwvaughn/bar_annotation_v1.0.0", 'dcterms:source': "https://github.com/Arabidopsis-Information-Portal/prov-enabled-api-sample" }) # the microservice was generated by me on date X (don't use now, use when the service was updated) g.wasGeneratedBy(adama_microservice, me, datetime.datetime.now()) # The microservice used the platform now g.used(adama_microservice, adama_platform, datetime.datetime.now()) # Sources # # Define BAR # Agents nick = g.agent( ap['nicholas_provart'], { 'prov:type': PROV["Person"], 'foaf:givenName': "Nicholas Provart", 'foaf:mbox': "*****@*****.**" }) utoronto = g.agent( ap['university_of_toronto'], { 'prov:type': PROV["Organization"], 'foaf:givenName': "University of Toronto", 'dcterms:identifier': "http://www.utoronto.ca/" }) g.actedOnBehalfOf(nick, utoronto) # Entity # All fields derived from Sources.yml # dcterms:title and dcterms:description come straight from the YAML # dcterms:identifier - URI pointing to the source's canonical URI representation # optional - dcterms:language: Recommended best practice is to use a controlled vocabulary such as RFC 4646 # optional - dcterms:updated: date the source was published or last updated # optional - dcterms:license: Simple string or URI to license. Validate URI if provided? datasource1 = g.entity( ap['datasource1'], { 'dcterms:title': "BAR Arabidopsis AGI -> Annotation", 'dcterms:description': "Most recent annotation for given AGI", 'dcterms:language': "en-US", 'dcterms:identifier': "http://bar.utoronto.ca/webservices/agiToAnnot.php", 'dcterms:updated': "2015-04-17T09:44:56", 'dcterms:license': "Creative Commons 3.0" }) # Set up attribution to Nick g.wasAttributedTo(datasource1, nick) # Define TAIR # Agents # dcterms:language: Recommended best practice is to use a controlled vocabulary such as RFC 4646 eva = g.agent(ap['eva_huala'], { 'prov:type': PROV["Person"], 'foaf:givenName': "Eva Huala" }) phoenix = g.agent( ap['phoenix_bioinformatics'], { 'prov:type': PROV["Organization"], 'foaf:givenName': "Phoenix Bioinformatics" }) g.actedOnBehalfOf(eva, phoenix) # Entity # All fields derived from Sources.yml # optional - dcterms:citation: Plain text bibliographic citation. If only provided as doi, should we try to validate it? datasource2 = g.entity( ap['datasource2'], { 'dcterms:title': "TAIR", 'dcterms:description': "The Arabidopsis Information Resource", 'dcterms:language': "en-US", 'dcterms:identifier': "https://www.arabidopsis.org/", 'dcterms:citation': "The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Research 2011 doi: 10.1093/nar/gkr1090" }) g.wasAttributedTo(datasource2, eva) # In Sources.yml, these two sources are nested. Define that relationship here # There are other types of relationships but we will just use derived from for simplicity in this prototype g.wasDerivedFrom(ap['datasource1'], ap['datasource2']) # Depending on which ADAMA microservice type we are using, define an activity # Eventually, break these into more atomic actions in a chain action1 = g.activity(ap['do_query'], datetime.datetime.now()) # action1 = g.activity(ap['do_map'], datetime.datetime.now()) # action1 = g.activity(ap['do_generic'], datetime.datetime.now()) # action1 = g.activity(ap['do_passthrough'], datetime.datetime.now()) # Future... Support for ADAMA-native microservices # action1 = g.activity(ap['generate'], datetime.datetime.now()) # Define current ADAMA response as an Entity # This is what's being returned to the user and is thus the subject of the PROV record # May be able to add more attributes to it but this is the minimum response = g.entity(ap['adama_response']) # Response is generated by the process_query action # Time-stamp it! g.wasGeneratedBy(response, ap['do_query'], datetime.datetime.now()) # The process_query used the microservice g.used(ap['do_query'], adama_microservice, datetime.datetime.now()) # The microservice used datasource1 g.used(adama_microservice, datasource1, datetime.datetime.now()) # Print prov_n print(g.get_provn()) # Print prov-json print(g.serialize()) # Write out as a pretty picture graph = prov.dot.prov_to_dot(g) graph.write_png('Sources.png')
def example(): g = ProvDocument() # Local namespace # Doesnt exist yet so we are creating it ap = Namespace('aip', 'https://araport.org/provenance/') # Dublin Core g.add_namespace("dcterms", "http://purl.org/dc/terms/") # FOAF g.add_namespace("foaf", "http://xmlns.com/foaf/0.1/") # Add sponsors and contributors as Agents # ap['matthew_vaughn'] # aip:matthew_vaughn # https://araport.org/provenance/:matthew_vaughn # Learn this from a call to profiles service? Adds a dependency on Agave so I am open to figuring out another way me = g.agent(ap['matthew_vaughn'], { 'prov:type': PROV["Person"], 'foaf:givenName': "Matthew Vaughn", 'foaf:mbox': "<mailto:[email protected]>" }) # Hard coded for now walter = g.agent(ap['walter_moreira'], { 'prov:type': PROV["Person"], 'foaf:givenName': "Walter Moreira", 'foaf:mbox': "<mailto:[email protected]>" }) utexas = g.agent(ap['university_of_texas'], { 'prov:type': PROV["Organization"], 'foaf:givenName': "University of Texas at Austin" }) # Set delegation to our host University # We may have trouble doing this for other users since we don't always capture their host instituion g.actedOnBehalfOf(walter, utexas) g.actedOnBehalfOf(me, utexas) # Include the ADAMA platform as an Agent and set attribution # dcterms:title and dcterms:description are hardcoded # dcterms:language is hard-coded # dcterms:source is the URI of the public git source repository for ADAMA # "dcterms:updated": "2015-04-17T09:44:56" - this would actually be the date ADAMA was updated adama_platform = g.agent(ap['adama_platform'], {'dcterms:title': "ADAMA", 'dcterms:description': "Araport Data and Microservices API", 'dcterms:language':"en-US", 'dcterms:identifier':"https://api.araport.org/community/v0.3/", 'dcterms:updated': "2015-04-17T09:44:56" }) g.wasGeneratedBy(adama_platform, walter) # Include the ADAMA microservice as an Agent and set attribution+delegation # dcterms:title and dcterms:description are inherited from the service's metadata # dcterms:language is hard-coded # dcterms:identifier is the deployment URI for the service # dcterms:source is the URI of the public git source repository. The URL in this example is just a dummy # # The name for each microservice should be unique. We've decided to # use the combination of namespace, service name, and version microservice_name = 'mwvaughn/bar_annotation_v1.0.0' adama_microservice = g.agent(ap[microservice_name], {'dcterms:title': "BAR Annotation Service", 'dcterms:description': "Returns annotation from locus ID", 'dcterms:language':"en-US", 'dcterms:identifier':"https://api.araport.org/community/v0.3/mwvaughn/bar_annotation_v1.0.0", 'dcterms:source':"https://github.com/Arabidopsis-Information-Portal/prov-enabled-api-sample" }) # the microservice was generated by me on date X (don't use now, use when the service was updated) g.wasGeneratedBy(adama_microservice, me, datetime.datetime.now()) # The microservice used the platform now g.used(adama_microservice, adama_platform, datetime.datetime.now()) # Sources # # Define BAR # Agents nick = g.agent(ap['nicholas_provart'], { 'prov:type': PROV["Person"], 'foaf:givenName': "Nicholas Provart", 'foaf:mbox': "*****@*****.**" }) utoronto = g.agent(ap['university_of_toronto'], { 'prov:type': PROV["Organization"], 'foaf:givenName': "University of Toronto", 'dcterms:identifier':"http://www.utoronto.ca/" }) g.actedOnBehalfOf(nick, utoronto) # Entity # All fields derived from Sources.yml # dcterms:title and dcterms:description come straight from the YAML # dcterms:identifier - URI pointing to the source's canonical URI representation # optional - dcterms:language: Recommended best practice is to use a controlled vocabulary such as RFC 4646 # optional - dcterms:updated: date the source was published or last updated # optional - dcterms:license: Simple string or URI to license. Validate URI if provided? datasource1 = g.entity(ap['datasource1'], {'dcterms:title': "BAR Arabidopsis AGI -> Annotation", 'dcterms:description': "Most recent annotation for given AGI", 'dcterms:language':"en-US", 'dcterms:identifier':"http://bar.utoronto.ca/webservices/agiToAnnot.php", 'dcterms:updated':"2015-04-17T09:44:56", 'dcterms:license':"Creative Commons 3.0" }) # Set up attribution to Nick g.wasAttributedTo(datasource1, nick) # Define TAIR # Agents # dcterms:language: Recommended best practice is to use a controlled vocabulary such as RFC 4646 eva = g.agent(ap['eva_huala'], { 'prov:type': PROV["Person"], 'foaf:givenName': "Eva Huala" }) phoenix = g.agent(ap['phoenix_bioinformatics'], { 'prov:type': PROV["Organization"], 'foaf:givenName': "Phoenix Bioinformatics" }) g.actedOnBehalfOf(eva, phoenix) # Entity # All fields derived from Sources.yml # optional - dcterms:citation: Plain text bibliographic citation. If only provided as doi, should we try to validate it? datasource2 = g.entity(ap['datasource2'], {'dcterms:title': "TAIR", 'dcterms:description': "The Arabidopsis Information Resource", 'dcterms:language':"en-US", 'dcterms:identifier':"https://www.arabidopsis.org/", 'dcterms:citation':"The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Research 2011 doi: 10.1093/nar/gkr1090"}) g.wasAttributedTo(datasource2, eva) # In Sources.yml, these two sources are nested. Define that relationship here # There are other types of relationships but we will just use derived from for simplicity in this prototype g.wasDerivedFrom(ap['datasource1'], ap['datasource2']) # Depending on which ADAMA microservice type we are using, define an activity # Eventually, break these into more atomic actions in a chain action1 = g.activity(ap['do_query'], datetime.datetime.now()) # action1 = g.activity(ap['do_map'], datetime.datetime.now()) # action1 = g.activity(ap['do_generic'], datetime.datetime.now()) # action1 = g.activity(ap['do_passthrough'], datetime.datetime.now()) # Future... Support for ADAMA-native microservices # action1 = g.activity(ap['generate'], datetime.datetime.now()) # Define current ADAMA response as an Entity # This is what's being returned to the user and is thus the subject of the PROV record # May be able to add more attributes to it but this is the minimum response = g.entity(ap['adama_response']) # Response is generated by the process_query action # Time-stamp it! g.wasGeneratedBy(response, ap['do_query'], datetime.datetime.now()) # The process_query used the microservice g.used(ap['do_query'], adama_microservice, datetime.datetime.now()) # The microservice used datasource1 g.used(adama_microservice, datasource1, datetime.datetime.now()) # Print prov_n print(g.get_provn()) # Print prov-json print(g.serialize()) # Write out as a pretty picture graph = prov.dot.prov_to_dot(g) graph.write_png('Sources.png')
def get_provenance_history(self, driver, uuid, depth=None): prov_doc = ProvDocument() #prov_doc. #NOTE!! There is a bug with the JSON serializer. I can't add the prov prefix using this mechanism prov_doc.add_namespace('ex', 'http://example.org/') prov_doc.add_namespace('hubmap', 'https://hubmapconsortium.org/') #prov_doc.add_namespace('dct', 'http://purl.org/dc/terms/') #prov_doc.add_namespace('foaf','http://xmlns.com/foaf/0.1/') relation_list = [] with driver.session() as session: try: # max_level_str is the string used to put a limit on the number of levels to traverse max_level_str = '' if depth is not None and len(str(depth)) > 0: max_level_str = """maxLevel: {depth},""".format( depth=depth) """ Basically this Cypher query returns a collection of nodes and relationships. The relationships include ACTIVITY_INPUT, ACTIVITY_OUTPUT and HAS_METADATA. First, we build a dictionary of the nodes using uuid as a key. Next, we loop through the relationships looking for HAS_METADATA relationships. The HAS_METADATA relationships connect the Entity nodes with their metadata. The data from the Metadata node becomes the 'metadata' attribute for the Entity node. """ """Possible replacement: THIS WORKS...NEEDS LOTS of COMMENTS!! MATCH (entity_metadata)<-[r1:HAS_METADATA]-(e)<-[r2:ACTIVITY_OUTPUT]-(a:Activity)-[r3:HAS_METADATA]->(activity_metadata) WHERE e.hubmap_identifier = 'TEST0010-LK-1-1' WITH [e,a, entity_metadata, activity_metadata] AS entities, COLLECT(r1) + COLLECT(r2) + COLLECT(r3) AS relationships WITH [node in entities | node {.*, label:labels(node)}] AS nodes, [rel in relationships | rel { .*, fromNode: { label:labels(startNode(rel))[0], uuid:startNode(rel).uuid } , toNode: { label:labels(endNode(rel))[0], uuid:endNode(rel).uuid }, rel_data: { type: type(rel) } } ] as rels RETURN nodes, rels UNION OPTIONAL MATCH (activity_metadata)<-[r1:HAS_METADATA]-(a:Activity)<-[r2:ACTIVITY_INPUT|:ACTIVITY_OUTPUT*]-(parent)-[r3:HAS_METADATA]->(parent_metadata), (e)<-[r4:ACTIVITY_OUTPUT]-(a:Activity) WHERE e.hubmap_identifier = 'TEST0010-LK-1-1' WITH [parent,parent_metadata, a, activity_metadata] AS nodes, [rel in COLLECT(r1) + COLLECT(r3) + COLLECT(r4)+COLLECT(apoc.convert.toRelationship(r2)) | rel { .*, fromNode: { label:labels(startNode(rel))[0], uuid:startNode(rel).uuid } , toNode: { label:labels(endNode(rel))[0], uuid:endNode(rel).uuid }, rel_data: { type: type(rel) } } ] as rels RETURN DISTINCT nodes, rels uuid for TEST0010-LK-1-1 for testing: eda3916db4695d834eb6c51a893d06f1 """ stmt = """MATCH (n:Entity {{ uuid: '{uuid}' }}) CALL apoc.path.subgraphAll(n, {{ {max_level_str} relationshipFilter:'<ACTIVITY_INPUT|<ACTIVITY_OUTPUT|HAS_METADATA>' }}) YIELD nodes, relationships WITH [node in nodes | node {{ .*, label:labels(node)[0] }} ] as nodes, [rel in relationships | rel {{ .*, fromNode: {{ label:labels(startNode(rel))[0], uuid:startNode(rel).uuid }} , toNode: {{ label:labels(endNode(rel))[0], uuid:endNode(rel).uuid }}, rel_data: {{ type: type(rel) }} }} ] as rels WITH {{ nodes:nodes, relationships:rels }} as json RETURN json""".format(uuid=uuid, max_level_str=max_level_str) result = session.run(stmt) #there should only be one record for jsonData in result: try: record = dict(jsonData)['json'] if 'relationships' not in record: raise LookupError( 'Error, unable to find relationships for uuid:' + uuid) if 'nodes' not in record: raise LookupError( 'Error, unable to find nodes for uuid:' + uuid) node_dict = {} # pack the nodes into a dictionary using the uuid as a key for node_record in record['nodes']: node_dict[node_record['uuid']] = node_record # TODO: clean up nodes # remove nodes that lack metadata # need to devise a methodology for this # try preprocessing the record['relationships'] here: # make a copy of the node_dict called unreferenced_node_dict # loop through the relationships and find all the has_metadata relationships # for each node pair in the has_metadata relationship, delete it from the unreferenced_node_dict # once the loop is finished, continue as before # add some logic when generating the wasGenerated and used relationships. If either node is in the # unreferenced_node_dict, then ignore the relationship # now, connect the nodes for rel_record in record['relationships']: from_uuid = rel_record['fromNode']['uuid'] to_uuid = rel_record['toNode']['uuid'] from_node = node_dict[from_uuid] to_node = node_dict[to_uuid] if rel_record['rel_data'][ 'type'] == HubmapConst.HAS_METADATA_REL: # assign the metadata node as the metadata attribute # just extract the provenance information from the metadata node entity_timestamp_json = Provenance.get_json_timestamp( int(to_node[ HubmapConst. PROVENANCE_CREATE_TIMESTAMP_ATTRIBUTE]) ) provenance_data = { ProvConst.PROV_GENERATED_TIME_ATTRIBUTE: entity_timestamp_json } type_code = None isEntity = True if HubmapConst.ENTITY_TYPE_ATTRIBUTE in from_node: type_code = from_node[ HubmapConst.ENTITY_TYPE_ATTRIBUTE] elif HubmapConst.ACTIVITY_TYPE_ATTRIBUTE in from_node: type_code = from_node[ HubmapConst.ACTIVITY_TYPE_ATTRIBUTE] isEntity = False label_text = None if HubmapConst.LAB_IDENTIFIER_ATTRIBUTE in from_node: label_text = from_node[ HubmapConst.LAB_IDENTIFIER_ATTRIBUTE] else: label_text = from_node[ HubmapConst.UUID_ATTRIBUTE] # build metadata attribute from the Metadata node metadata_attribute = {} for attribute_key in to_node: if attribute_key not in self.metadata_ignore_attributes: if attribute_key in self.known_attribute_map: # special case: timestamps if attribute_key == HubmapConst.PROVENANCE_MODIFIED_TIMESTAMP_ATTRIBUTE: provenance_data[ self.known_attribute_map[ attribute_key]] = Provenance.get_json_timestamp( int(to_node[ attribute_key]) ) else: #add any extraneous data to the metadata attribute metadata_attribute[ attribute_key] = to_node[ attribute_key] # Need to add the agent and organization here, plus the appropriate relationships (between the entity and the agent plus orgainzation) agent_record = self.get_agent_record(to_node) agent_unique_id = str(agent_record[ ProvConst.HUBMAP_PROV_USER_EMAIL]).replace( '@', '-') agent_unique_id = str(agent_unique_id).replace( '.', '-') if ProvConst.HUBMAP_PROV_USER_UUID in agent_record: agent_unique_id = agent_record[ ProvConst.HUBMAP_PROV_USER_UUID] agent_uri = Provenance.build_uri( 'hubmap', 'agent', agent_unique_id) organization_record = self.get_organization_record( to_node) organization_uri = Provenance.build_uri( 'hubmap', 'organization', organization_record[ ProvConst.HUBMAP_PROV_GROUP_UUID]) doc_agent = None doc_org = None get_agent = prov_doc.get_record(agent_uri) # only add this once if len(get_agent) == 0: doc_agent = prov_doc.agent( agent_uri, agent_record) else: doc_agent = get_agent[0] get_org = prov_doc.get_record(organization_uri) # only add this once if len(get_org) == 0: doc_org = prov_doc.agent( organization_uri, organization_record) else: doc_org = get_org[0] other_attributes = { ProvConst.PROV_LABEL_ATTRIBUTE: label_text, ProvConst.PROV_TYPE_ATTRIBUTE: type_code, ProvConst.HUBMAP_DOI_ATTRIBUTE: from_node[HubmapConst.DOI_ATTRIBUTE], ProvConst.HUBMAP_DISPLAY_DOI_ATTRIBUTE: from_node[ HubmapConst.DISPLAY_DOI_ATTRIBUTE], ProvConst.HUBMAP_DISPLAY_IDENTIFIER_ATTRIBUTE: label_text, ProvConst.HUBMAP_UUID_ATTRIBUTE: from_node[HubmapConst.UUID_ATTRIBUTE] } # only add metadata if it contains data if len(metadata_attribute) > 0: other_attributes[ ProvConst. HUBMAP_METADATA_ATTRIBUTE] = json.dumps( metadata_attribute) # add the provenance data to the other_attributes other_attributes.update(provenance_data) if isEntity == True: prov_doc.entity( Provenance.build_uri( 'hubmap', 'entities', from_node['uuid']), other_attributes) else: activity_timestamp_json = Provenance.get_json_timestamp( int(to_node[ HubmapConst. PROVENANCE_CREATE_TIMESTAMP_ATTRIBUTE] )) doc_activity = prov_doc.activity( Provenance.build_uri( 'hubmap', 'activities', from_node['uuid']), activity_timestamp_json, activity_timestamp_json, other_attributes) prov_doc.actedOnBehalfOf( doc_agent, doc_org, doc_activity) elif rel_record['rel_data']['type'] in [ HubmapConst.ACTIVITY_OUTPUT_REL, HubmapConst.ACTIVITY_INPUT_REL ]: to_node_uri = None from_node_uri = None if HubmapConst.ENTITY_TYPE_ATTRIBUTE in to_node: to_node_uri = Provenance.build_uri( 'hubmap', 'entities', to_node['uuid']) else: to_node_uri = Provenance.build_uri( 'hubmap', 'activities', to_node['uuid']) if HubmapConst.ENTITY_TYPE_ATTRIBUTE in from_node: from_node_uri = Provenance.build_uri( 'hubmap', 'entities', from_node['uuid']) else: from_node_uri = Provenance.build_uri( 'hubmap', 'activities', from_node['uuid']) if rel_record['rel_data'][ 'type'] == 'ACTIVITY_OUTPUT': #prov_doc.wasGeneratedBy(entity, activity, time, identifier, other_attributes) prov_doc.wasGeneratedBy( to_node_uri, from_node_uri) if rel_record['rel_data'][ 'type'] == 'ACTIVITY_INPUT': #prov_doc.used(activity, entity, time, identifier, other_attributes) prov_doc.used(to_node_uri, from_node_uri) # for now, simply create a "relation" where the fromNode's uuid is connected to a toNode's uuid via a relationship: # ex: {'fromNodeUUID': '42e10053358328c9079f1c8181287b6d', 'relationship': 'ACTIVITY_OUTPUT', 'toNodeUUID': '398400024fda58e293cdb435db3c777e'} rel_data_record = { 'fromNodeUUID': from_node['uuid'], 'relationship': rel_record['rel_data']['type'], 'toNodeUUID': to_node['uuid'] } relation_list.append(rel_data_record) return_data = { 'nodes': node_dict, 'relations': relation_list } except Exception as e: raise e # there is a bug in the JSON serializer. So manually insert the prov prefix output_doc = prov_doc.serialize(indent=2) output_doc = output_doc.replace( '"prefix": {', '"prefix": {\n "prov" : "http://www.w3.org/ns/prov#", ') #output_doc = prov_doc.serialize(format='rdf', rdf_format='trig') #output_doc = prov_doc.serialize(format='provn') return output_doc except ConnectionError as ce: print('A connection error occurred: ', str(ce.args[0])) raise ce except ValueError as ve: print('A value error occurred: ', ve.value) raise ve except Exception as e: print('An exception occurred in get_provenance_history: ' + str(e)) traceback.print_exc()