コード例 #1
0
 def add_reduction(reduction, _radius, _theta):
     '''
     Add the given reduction.  First check that its left and
     rights sides are as expected: the left should be the polar
     form and the right should be the original expression.
     '''
     polar_form = Mult(_radius, Exp(e, Mult(i, _theta)))
     assert (isinstance(reduction, Judgment)
             and isinstance(reduction.expr, Equals)
             and reduction.lhs == polar_form and reduction.rhs
             == orig_expr), ("Reduction, %s, not a judgement "
                             "for %s = %s" %
                             (reduction, polar_form, orig_expr))
     if do_include_unit_length_reduction and _radius == one:
         # As a unit length complex number, let's include the
         # reduction from the unit length form in case a unit length
         # formula is applied (cover the bases).
         # The 'automation' allowed here is negligible (assuming
         # we have already proven appropriate set membership by this
         # point).
         reductions.add(reduction.inner_expr().lhs.eliminate_one(
             0, automation=True))
         # But prepare for a multi-stage reduction:
         # 1 * exp[i * theta] = 1 * orig_expr = orig_expr
         reductions.add(
             Mult(one, orig_expr).one_elimination(0, automation=True))
     elif reduction.lhs != reduction.rhs:
         reductions.add(reduction)
コード例 #2
0
ファイル: quantum_ops.py プロジェクト: PyProveIt/Prove-It
def QubitRegisterSpace(num_Qbits):
    '''
    Transplanted here beginning 2/13/2020 by wdc, from the old
    physics/quantum/common.py
    '''
    if num_Qbits == 1:
        return CartExp(Complex, two)
    return CartExp(Complex, Exp(two, num_Qbits))
コード例 #3
0
def QubitRegisterSpace(num_Qbits):
    '''
    Transplanted here beginning 2/13/2020 by wdc, from the old
    physics/quantum/common.py
    '''
    # need some extra curly brackets around the Exp() expression
    # to allow the latex superscript to work on something
    # already superscripted
    return TensorExp({Exp(Complex, num(2))}, num_Qbits)
コード例 #4
0
 def add_reduction(reduction, _theta):
     '''
     Add the given reduction.  First check that its left and
     rights sides are as expected: the left should be the polar
     form and the right should be the original expression.
     '''
     polar_form = Exp(e, Mult(i, _theta))
     assert (isinstance(reduction, Judgment)
             and isinstance(reduction.expr, Equals)
             and reduction.lhs == polar_form and reduction.rhs == orig_expr)
     if reduction.lhs != reduction.rhs:
         reductions.add(reduction)
コード例 #5
0
from proveit import Etcetera
from proveit.logic import Forall, InSet, Equals, NotEquals
from proveit.numbers import Integer, Natural, NaturalPos, Real, RealPos, Complex
from proveit.numbers import Exp, sqrt, Add, Mult, Sub, Neg, frac, Abs, GreaterThan, GreaterThanEquals, LessThan, LessThanEquals
from proveit.common import a, b, c, d, n, x, y, z, x_etc, x_multi
from proveit.numbers.common import zero, one, two
from proveit import begin_theorems, end_theorems

begin_theorems(locals())

exp_nat_closure = Forall((a, b),
                         InSet(Exp(a, b), NaturalPos),
                         domain=Natural,
                         conditions=[NotEquals(a, zero)])
exp_nat_closure

exp_real_closure = Forall(
    [a, b],
    InSet(Exp(a, b), Real),
    domain=Real,
    conditions=[GreaterThanEquals(a, zero),
                GreaterThan(b, zero)])
exp_real_closure

exp_real_pos_closure = Forall([a, b],
                              InSet(Exp(a, b), RealPos),
                              domain=Real,
                              conditions=[GreaterThan(a, zero)])
exp_real_pos_closure

exp_complex_closure = Forall([a, b],
コード例 #6
0
ファイル: quantum_ops.py プロジェクト: PyProveIt/Prove-It
def RegisterU(n):
    return Unitary(Exp(two, n))
コード例 #7
0
ファイル: quantum_ops.py プロジェクト: PyProveIt/Prove-It
def RegisterSU(n):
    return SpecialUnitary(Exp(two, n))
コード例 #8
0
frac_cancel_complete = Forall(x,
                              Equals(frac(x, x), one),
                              domain=Complex,
                              conditions=[NotEquals(x, zero)])
frac_cancel_complete

reversefrac_of_subtractions = Forall([w, x, y, z],
                                     Equals(frac(Sub(w, x), Sub(y, z)),
                                            frac(Sub(x, w), Sub(z, y))),
                                     domain=Complex)
reversefrac_of_subtractions

frac_int_exp = Forall(n,
                      Forall(
                          (a, b),
                          Equals(frac(Exp(a, n), Exp(b, n)),
                                 Exp(frac(a, b), n)),
                          conditions=[NotEquals(a, zero),
                                      NotEquals(b, zero)]),
                      domain=Integer)
frac_int_exp

frac_int_exp_rev = Forall(
    n,
    Forall((a, b),
           Equals(Exp(frac(a, b), n), frac(Exp(a, n), Exp(b, n))),
           conditions=[NotEquals(a, zero),
                       NotEquals(b, zero)]),
    domain=Integer)
frac_int_exp_rev
コード例 #9
0
    def exponent_combination(self,
                             start_idx=None,
                             end_idx=None,
                             assumptions=USE_DEFAULTS):
        '''
        Equates $a^m/a^n$ to $a^{m-n} or
        $a^c/b^c$ to $(a/b)^c$.
        '''
        from proveit.logic import InSet
        from proveit.numbers import (Exp, NaturalPos, RealPos, Real, Complex)
        from proveit.numbers.exponentiation import (quotient_of_posnat_powers,
                                                    quotient_of_pos_powers,
                                                    quotient_of_real_powers,
                                                    quotient_of_complex_powers)
        if (isinstance(self.numerator, Exp)
                and isinstance(self.denominator, Exp)):
            if self.numerator.base == self.denominator.base:
                # Same base: (a^b/a^c) = a^{b-c}
                same_base = self.numerator.bas
                exponents = (self.numerator.exponent,
                             self.denominator.exponent)
                # Find out the known type of the exponents.
                possible_exponent_types = [NaturalPos, RealPos, Real, Complex]
                for exponent in exponents:
                    while len(possible_exponent_types) > 1:
                        exponent_type = possible_exponent_types[0]
                        if InSet(exponent, exponent_type).proven(assumptions):
                            # This type is known for this exponent.
                            break
                        # We've eliminated a type from being known.
                        possible_exponent_types.pop(0)
                known_exponent_type = possible_exponent_types[0]

                if known_exponent_type == NaturalPos:
                    _m, _n = exponents
                    return quotient_of_posnat_powers.instantiate(
                        {
                            a: same_base,
                            m: _m,
                            n: _n
                        }, assumptions=assumptions)
                else:
                    _b, _c = exponents
                    if known_exponent_type == RealPos:
                        thm = quotient_of_pos_powers
                    elif known_exponent_type == Real:
                        thm = quotient_of_real_powers
                    else:  # Complex is the default
                        thm = quotient_of_complex_powers
                    thm.instantiate({
                        a: same_base,
                        b: _b,
                        c: _c
                    },
                                    assumptions=assumptions)

            elif self.numerator.exponent == self.denominator.exponent:
                # Same exponent: (a^c/b^c) = (a/b)^c
                same_exponent = self.numerator.exponent
                bases = (self.numerator.base, self.denominator.base)
                # Combining the exponents in this case is the reverse
                # of disibuting an exponent.
                quotient = Div(*bases).with_matching_style(self)
                exp = Exp(quotient, same_exponent)
                return exp.distribution(assumptions).derive_reversed(
                    assumptions)
        else:
            raise NotImplementedError("Need to implement degenerate cases "
                                      "of a^b/a and a/a^b.")
コード例 #10
0
# t: Number of qubit registers for the quantum phase estimation.
#    We prove that this is the bits of precision of phase estimation.
t_ = Literal(pkg, 't')

# Psi: Outcome of register qubits following the quantum phase estimation
# circuit.
Psi_ = Literal(pkg, 'PSI', {STRING: 'Psi', LATEX: r'\Psi'})
# psi: indexed intermediate output registers inside the quantum phase
# estimation circuit.
psi_ = Literal(pkg, 'psi', {STRING: 'psi', LATEX: r'\psi'})
psi_k = SubIndexed(psi_, k)
psi_t = SubIndexed(psi_, t_)
psi_next = SubIndexed(psi_, Add(k, one))
psi_1 = SubIndexed(psi_, one)

U_pow_two_pow_k = Exp(U_, Exp(two, k))

# m: Random variable for the measurement of Psi as an integer from the
# register's binary representation.
m_ = Literal(pkg, 'm')

# phase_m: Random variable for the phase result of the quantum phase estimation.
#          phase_m = m / 2^t
phase_m_ = Literal(pkg, 'phase_m', {LATEX: r'\varphi_m'})

# b: The "best" outcome of m such that phase_m is as close as possible to
# phase.
b_ = Literal(pkg, 'b')

# 2^t
two_pow_t = Exp(two, t_)
コード例 #11
0
def complex_polar_coordinates(expr,
                              *,
                              radius_must_be_nonneg=True,
                              nonneg_radius_preferred=True,
                              do_include_unit_length_reduction=True,
                              reductions=None):
    '''
    Given an expression, expr, of the complex number polar form,
        r * exp(i * theta),
    or something obviously equivalent to this, where r and theta are 
    Real (and r is preferably RealNonNeg) under the given assumptions, 
    return
        (r, theta)
    as a tuple pair. If defaults.automation=False, the r and theta must
    already be known to be RealNonNeg and Real respectively. If
    defaults.automation=True, we may attempt to prove these through 
    automation.
    
    If radius_must_be_nonneg and nonneg_radius_preferred are False, 
    we won't worry about ensuring that r is non-negative (so the result
    can be ambiguous).  If radius_must_be_nonneg is True, a ValueError
    will be raised if we can't convert to a form where r is known to be
    non-negative.
    
    If expr is not exactly in this complex number polar form and
    'reductions' is provided as a set, add to the 'reductions' set
    an equation that equates the exact form on the left with the
    original form on the right.  This may be useful to use as
    'reductions' in instantiations of theorems that employ the
    complex number polar form so it may perform proper reductions
    to the desired form.  For example, if expr=5 is provided,
    the added reduction will be
        5 * exp(i * 0) = 5.
    
    If do_include_unit_length_reduction is True,  we will included
    reductions so that it will reduce from the unit length
    form as well.  For example, if expr=1 is provided, the added
    reductions will be
        exp(i * 0) = 1
        1 * 1 = 1.
    This also works in a way that cascades when reducing from the
    general polar form:
        1 * exp(i * 0) = 1 * 1 = 1
    
    Raise ValueError if the expr is not obviously equivalent to a
    complex number polar form.

    Also see unit_length_complex_polar_angle.
    '''
    from . import complex_polar_negation, complex_polar_radius_negation
    from proveit.logic import InSet, Equals
    from proveit.numbers import deduce_in_number_set, deduce_number_set
    from proveit.numbers import zero, one, e, i, pi
    from proveit.numbers import Real, RealNonPos, RealNonNeg, Complex
    from proveit.numbers import Add, LessEq, Neg, Mult, Exp
    orig_expr = expr
    automation = defaults.automation
    simplify = defaults.auto_simplify
    if reductions is None: reductions = set()

    def add_reduction(reduction, _radius, _theta):
        '''
        Add the given reduction.  First check that its left and
        rights sides are as expected: the left should be the polar
        form and the right should be the original expression.
        '''
        polar_form = Mult(_radius, Exp(e, Mult(i, _theta)))
        assert (isinstance(reduction, Judgment)
                and isinstance(reduction.expr, Equals)
                and reduction.lhs == polar_form and reduction.rhs
                == orig_expr), ("Reduction, %s, not a judgement "
                                "for %s = %s" %
                                (reduction, polar_form, orig_expr))
        if do_include_unit_length_reduction and _radius == one:
            # As a unit length complex number, let's include the
            # reduction from the unit length form in case a unit length
            # formula is applied (cover the bases).
            # The 'automation' allowed here is negligible (assuming
            # we have already proven appropriate set membership by this
            # point).
            reductions.add(reduction.inner_expr().lhs.eliminate_one(
                0, automation=True))
            # But prepare for a multi-stage reduction:
            # 1 * exp[i * theta] = 1 * orig_expr = orig_expr
            reductions.add(
                Mult(one, orig_expr).one_elimination(0, automation=True))
        elif reduction.lhs != reduction.rhs:
            reductions.add(reduction)

    def raise_not_valid_form(extra_msg=None):
        if extra_msg is None: extra_msg = ""
        raise ValueError("%s not in a form that is obviously "
                         "reducible from an r * exp(i*theta) form. %s" %
                         (orig_expr, extra_msg))

    if (isinstance(expr, Exp)
            or (isinstance(expr, Neg) and isinstance(expr.operand, Exp))):
        # exp(i * theta) reduced from 1 * exp(i * theta).
        # or exp(i * (theta + pi)) reduced from -exp(i * theta).
        inner_reductions = set()
        _theta = unit_length_complex_polar_angle(expr,
                                                 reductions=inner_reductions)
        deduce_in_number_set(_theta, Complex)
        deduce_in_number_set(Mult(i, _theta), Complex)
        deduce_in_number_set(Exp(e, Mult(i, _theta)), Complex)
        _r = one
        expr = Mult(_r, Exp(e, Mult(i, _theta)))
        # reduction: 1*exp(i * theta) = exp(i * theta)
        reduction = expr.one_elimination(0, preserve_all=True)
        # reduction: 1*exp(i * theta) = orig_expr
        if len(inner_reductions) > 0:
            reduction = reduction.inner_expr().rhs.substitute(
                inner_reductions.pop().rhs, preserve_all=True)
        # Add the reduction and return the coordinates.
        add_reduction(reduction, _r, _theta)
        return (_r, _theta)
    elif isinstance(expr, Neg):
        # expr = -(r*exp(i*theta0)) = r*exp(i*(theta0 + pi))
        inner_reductions = set()
        # obtain the theta of the negated expression.
        _r, _theta0 = complex_polar_coordinates(
            expr.operand,
            radius_must_be_nonneg=radius_must_be_nonneg,
            nonneg_radius_preferred=nonneg_radius_preferred,
            reductions=inner_reductions)
        # theta = theta0 + pi
        _theta = Add(_theta0, pi)
        if defaults.auto_simplify:
            # simplify theta
            theta_simplification = _theta.simplification()
            inner_reductions.add(theta_simplification)
            _theta = theta_simplification.rhs
        deduce_in_number_set(_theta, Complex)
        deduce_in_number_set(Mult(i, _theta), Complex)
        deduce_in_number_set(Exp(e, Mult(i, _theta)), Complex)
        # reduction: r*exp(i*theta) = orig_expr [via -(r*exp(i*theta0))]
        reduction = complex_polar_negation.instantiate(
            {
                r: _r,
                theta: _theta0
            },
            replacements=inner_reductions,
            auto_simplify=False)
        # Add the reduction and return the coordinates.
        add_reduction(reduction, _r, _theta)
        return (_r, _theta)

    # Search for an exponentiation factor with base of 'e' and an
    # imaginary number in the exponent.
    complex_exp_factor_idx = None
    if isinstance(expr, Mult):
        i_factor_idx = None
        for idx, factor in enumerate(expr.factors):
            if isinstance(factor, Exp) and factor.base == e:
                # exp(x) type factor; check for imaginary number in
                # exponent.
                contains_imaginary_factor = False
                sub_expr = factor.exponent
                if isinstance(sub_expr, Neg):
                    sub_expr = sub_expr.operand
                if isinstance(sub_expr, Mult):
                    if i in sub_expr.operands.entries:
                        contains_imaginary_factor = True
                else:
                    contains_imaginary_factor = (sub_expr == i)
                if contains_imaginary_factor:
                    # Found imaginary number in an exponent.
                    if ((complex_exp_factor_idx is not None)
                            or (i_factor_idx is not None)):
                        # We already have an imaginary number in
                        # an exponent.  We can only have one.
                        raise_not_valid_form()
                    complex_exp_factor_idx = idx
                    deduce_in_number_set(sub_expr, Complex)
    if complex_exp_factor_idx is None:
        # No exp(i theta) factor.  Let's multiply by exp(i * 0).
        exp_i0 = Exp(e, Mult(i, zero))
        expr = Mult(expr, exp_i0)
        inner_reductions = set()
        _r, _theta = complex_polar_coordinates(
            expr,
            radius_must_be_nonneg=radius_must_be_nonneg,
            nonneg_radius_preferred=nonneg_radius_preferred,
            do_include_unit_length_reduction=False,
            reductions=inner_reductions)
        assert _theta == zero
        deduce_in_number_set(exp_i0, Complex)
        # reduction: r * exp(i * theta) = orig_expr * exp(i * 0)
        if len(inner_reductions) > 0:
            reduction = inner_reductions.pop()
        else:
            reduction = Equals(expr, expr).conclude_via_reflexivity()
        # reduction: r * exp(i * theta) = orig_expr
        reduction = reduction.inner_expr().rhs.simplify(
            preserve_expr=orig_expr)
        add_reduction(reduction, _r, _theta)
        return (_r, _theta)

    # expr in ... * exp(... * i * ...) * ... form
    # Obtain the theta from exp(... * i * ...) = exp[i * theta0].
    inner_reductions = set()
    _theta0 = unit_length_complex_polar_angle(
        expr.factors[complex_exp_factor_idx], reductions=inner_reductions)
    expr = Mult(*expr.factors.entries[:complex_exp_factor_idx],
                Exp(e, Mult(i, _theta0)),
                *expr.factors.entries[complex_exp_factor_idx + 1:])
    # reduction: ... * expr[i * theta0] * ... = orig_expr
    if len(inner_reductions) > 0:
        reduction = expr.inner_expr().operands[1].substitution(
            inner_reductions.pop().rhs, preserve_all=True)
    else:
        reduction = Equals(expr, expr).conclude_via_reflexivity()
    if not expr.operands.is_double() or complex_exp_factor_idx != 1:
        # Pull the exp(i*theta) type factor to the right.
        # reduction: r0 * exp(i * theta0) = orig_expr
        for factor in expr.factors:
            # Deduce the factors are complex numbers ahead of time
            # in case automation is disabled.
            deduce_in_number_set(factor, Complex)
        reduction = reduction.inner_expr().lhs.factor(complex_exp_factor_idx,
                                                      pull='right',
                                                      group_remainder=True,
                                                      preserve_all=True)
        expr = reduction.lhs
    # expr: r0 * exp(i * theta0)
    assert expr.operands.is_double() and isinstance(expr.operands[1], Exp)
    # Check that r0 is real and that we know it's relation with zero.
    _r0 = expr.operands[0]
    _r0_ns = deduce_number_set(_r0).domain
    if Real.includes(_r0_ns):
        InSet(_r0, Real).prove()
    else:
        raise_not_valid_form("%s not known to be real." % _r0)
    is_known_nonneg = RealNonNeg.includes(_r0_ns)
    is_known_nonpos = RealNonPos.includes(_r0_ns)
    if radius_must_be_nonneg:
        # We must know the relationship between r0 and 0 so we
        # can ensure r is non-negative.
        if not nonneg_radius_preferred:
            ValueError("nonneg_radius_preferred must be True if "
                       "radius_must_be_nonneg is True.")
        if not (is_known_nonneg or is_known_nonpos):
            raise_not_valid_form("Relation of %s to 0 is unknown and "
                                 "radius_must_be_nonneg is True." % _r0)
    if nonneg_radius_preferred and is_known_nonpos:
        # r0 <= 0, so we must negate it and add pi to the angle.
        inner_reductions = {reduction}
        # theta: theta + pi
        _theta = Add(_theta0, pi)
        if simplify:
            # simplify theta
            theta_simplification = _theta.simplification()
            inner_reductions.add(theta_simplification)
            _theta = theta_simplification.rhs
        # r: -r0
        _r = Neg(_r0)
        if simplify:
            # simplify radius
            radius_simplification = _r.simplification()
            inner_reductions.add(radius_simplification)
            _r = radius_simplification.rhs
        # reduction: r*exp(i*theta) = orig_expr [via r0*exp(i*theta0))]
        reduction = complex_polar_radius_negation.instantiate(
            {
                r: _r0,
                theta: _theta0
            },
            replacements=inner_reductions,
            auto_simplify=False)
    else:
        _r, _theta = _r0, _theta0
    # Add the reduction and return the coordinates.
    add_reduction(reduction, _r, _theta)
    return (_r, _theta)
コード例 #12
0
def unit_length_complex_polar_angle(expr, *, reductions=None):
    '''
    Given an expression, expr, of the complex number polar form,
        exp(i * theta),
    or something obviously equivalent to this, where r is RealNonNeg 
    and theta is Real under the given assumptions, return theta.
    If defaults.automation=False, theta must already be known to be 
    Real. If defaults.automation=True, we may attempt to prove these 
    through automation.
    
    If expr is not exactly in this complex number polar form and
    'reductions' is provided as a set, add to the 'reductions' set
    an equation that equates the exact form on the left with the
    original form on the right.  This may be useful to use as
    'replacements' in instantiations of theorems that employ the
    complex number polar form so it may perform proper reductions
    to the desired form.  For example, if expr=1 is provided,
    the added reduction will be
        exp(i * 0) = 1
    
    Raise ValueError if the expr is not obviously equivalent to a
    complex number polar form.
    
    Also see complex_polar_coordinates.
    '''
    from proveit import ExprRange
    from proveit.logic import Equals, InSet
    from proveit.numbers import deduce_in_number_set, deduce_number_set
    from proveit.numbers import zero, one, e, i, pi
    from proveit.numbers import Add, Neg, Mult, Exp, Real, Complex
    from . import unit_length_complex_polar_negation
    if reductions is None: reductions = set()

    orig_expr = expr

    def raise_not_valid_form(extra_msg=None):
        if extra_msg is None: extra_msg = ""
        raise ValueError("%s not in a form that is obviously "
                         "reducible from an exp(i*theta) form. %s" %
                         (orig_expr, extra_msg))

    automation = defaults.automation
    simplify = defaults.auto_simplify

    def add_reduction(reduction, _theta):
        '''
        Add the given reduction.  First check that its left and
        rights sides are as expected: the left should be the polar
        form and the right should be the original expression.
        '''
        polar_form = Exp(e, Mult(i, _theta))
        assert (isinstance(reduction, Judgment)
                and isinstance(reduction.expr, Equals)
                and reduction.lhs == polar_form and reduction.rhs == orig_expr)
        if reduction.lhs != reduction.rhs:
            reductions.add(reduction)

    if expr == one:
        # expr = 1 = exp(i * 0)
        _theta = zero
        expr = Exp(e, Mult(i, _theta))
        # reduction: exp(i * 0) = 1
        reduction = expr.simplification()
        # Add the reduction and return theta.
        add_reduction(reduction, _theta)
        return _theta
    if isinstance(expr, Exp) and expr.base == e:
        if expr.exponent == i:
            # expr = exp(i) = exp(i * 1)
            _theta = one
            expr = Exp(e, Mult(i, one))
            # reduction: exp(i * 1) = exp(i)
            reduction = expr.inner_expr().exponent.one_elimination(1)
            # Add the reduction and return theta.
            add_reduction(reduction, _theta)
            return _theta
        if hasattr(expr.exponent, 'factorization'):
            if (isinstance(expr.exponent, Mult)
                    and expr.exponent.operands.is_double()
                    and expr.exponent.operands[0] == i):
                # Already in the proper form.  No reduction needed,
                # but we do need to check that theta is real.
                _theta = expr.exponent.factors[1]
                _theta_ns = deduce_number_set(_theta).domain
                if not Real.includes(_theta_ns):
                    raise_not_valid_form("%s known to be %s but not Real." %
                                         (_theta, _theta_ns))
                deduce_in_number_set(_theta, Real)
                return _theta
            try:
                # Factor i in the exponent, pulling to the left to
                # get into exp(i * theta) form.
                for operand in expr.exponent.operands:
                    # Deduce the operands are complex numbers ahead of
                    # time in case automation is disabled.
                    deduce_in_number_set(operand, Complex)
                factorization = expr.inner_expr().exponent.factorization(
                    i, pull='left', group_remainder=True, preserve_all=True)
                expr = factorization.rhs
                assert isinstance(expr.exponent, Mult)
                assert expr.exponent.factors.is_double()
                assert expr.exponent.factors[0] == i
                _theta = expr.exponent.factors[1]
                _theta_ns = deduce_number_set(_theta).domain
                if not Real.includes(_theta_ns):
                    raise_not_valid_form("%s known to be %s but not Real." %
                                         (_theta, _theta_ns))
                # reduction: exp(i * theta) = orig_expr
                reduction = factorization.derive_reversed()
                # Add the reduction and return theta.
                add_reduction(reduction, _theta)
                return _theta
            except ValueError:
                raise_not_valid_form()
    if isinstance(expr, Neg):
        # expr = -exp(i*theta0) = exp(i*(theta0 + pi)) = exp(i*theta)
        inner_reductions = set()
        # obtain the theta of the negated expression.
        _theta0 = unit_length_complex_polar_angle(expr.operand,
                                                  reductions=inner_reductions)
        # theta = theta0 + pi
        _theta = Add(_theta0, pi)
        if simplify:
            # simplify theta
            theta_simplification = _theta.simplification()
            inner_reductions.add(theta_simplification)
            _theta = theta_simplification.rhs
        # reduction: exp(i*theta) = orig_expr [via -exp(i*theta0)]
        reduction = unit_length_complex_polar_negation.instantiate(
            {theta: _theta0},
            replacements=inner_reductions,
            auto_simplify=False)
        # Add the reduction and return theta.
        add_reduction(reduction, _theta)
        return _theta

    raise_not_valid_form()
コード例 #13
0
def RegisterSU(n):
    '''
    Transplanted here beginning 2/13/2020 by wdc, from the old
    physics/quantum/common.py
    '''
    return SU(Exp(num(2), n))
コード例 #14
0
ファイル: common.py プロジェクト: gustavomonente/Prove-It
def RegisterSU(n):
    return SU(Exp(two, n))
コード例 #15
0
ファイル: common.py プロジェクト: gustavomonente/Prove-It
def QubitRegisterSpace(n):
    return TensorExp(Exp(Complex, two), n)
コード例 #16
0
ファイル: common.py プロジェクト: gustavomonente/Prove-It
Xgate = Gate(X)
Ygate = Gate(Y)
Zgate = Gate(Z)
Hgate = Gate(H)

CTRL_UP = Literal(pkg, 'CTRL_UP')
CTRL_DN = Literal(pkg, 'CTRL_DN')
CTRL_UPDN = Literal(pkg, 'CTRL_UPDN')

WIRE_UP = Literal(pkg, 'WIRE_UP')  # wire goes up to link with another wire
WIRE_DN = Literal(pkg, 'WIRE_DN')  # wire goes down to link with another wire
# link destination for WIRE_UP or WIRE_DN
WIRE_LINK = Literal(pkg, 'WIRE_LINK')

QubitSpace = Exp(Complex, two)


def QubitRegisterSpace(n):
    return TensorExp(Exp(Complex, two), n)


def RegisterSU(n):
    return SU(Exp(two, n))


inv_root2 = frac(one, sqrt(two))

B1 = Variable('B1')
B2 = Variable('B2')
B3 = Variable('B3')