コード例 #1
0
def eval_one_epoch(sess, ops, num_votes=12, topk=1):
    is_training = False

    current_data = np.empty([len(TRAIN_FILES), NUM_POINT, 3], dtype=float)
    labels = np.empty([len(TRAIN_FILES)], dtype=int)
    current_label = np.empty([len(TRAIN_FILES)], dtype=int)

    for fn in range(len(TRAIN_FILES)):
        cut1, cut2, label = provider.loadDataFile_cut_2(TRAIN_FILES[fn], False)
        # data, label = provider.loadDataFile(TRAIN_FILES[fn])
        data = np.concatenate((cut1, cut2), axis=0)
        # data = cut1

        idx = np.random.randint(data.shape[0], size=NUM_POINT)
        data = data[idx, :]

        label = np.squeeze(label)
        current_data[fn] = data
        current_label[fn] = 0
        labels[fn] = label

    current_label = np.squeeze(current_label)

    file_size = current_data.shape[0]
    num_batches = file_size // BATCH_SIZE
    log_string('file_size: %d' % (file_size))
    log_string('num_batches: %d' % (num_batches))

    #save labels for test
    label_f = open('features/train_label.txt', 'w+')
    labels = labels[0:num_batches * BATCH_SIZE]
    np.savetxt(label_f, labels, fmt='%d')

    for vote_idx in range(num_votes):
        log_string('vote: %d' % (vote_idx))
        feature_f = open('features/train_feature_' + str(vote_idx) + '.txt',
                         'w')
        for batch_idx in range(num_batches):
            start_idx = batch_idx * BATCH_SIZE
            end_idx = (batch_idx + 1) * BATCH_SIZE
            cur_batch_size = end_idx - start_idx

            print(batch_idx)
            rotated_data = provider.rotate_point_cloud_by_angle(
                current_data[start_idx:end_idx, :, :],
                vote_idx / float(num_votes) * np.pi * 2)
            feed_dict = {
                ops['pointclouds_pl']: rotated_data,
                ops['labels_pl']: current_label[start_idx:end_idx],
                ops['is_training_pl']: is_training
            }

            _, _, feat_out = sess.run(
                [ops['loss'], ops['pred'], ops['feature']],
                feed_dict=feed_dict)

            np.savetxt(feature_f, feat_out, fmt='%f')
コード例 #2
0
import sys
import os
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, 'models'))
sys.path.append(os.path.join(BASE_DIR, 'utils'))
import provider

TRAIN_FILES = provider.getDataFiles(\
    os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048_cut/train_files.txt'))

gt_labels = np.empty([len(TRAIN_FILES),1], dtype=int)

print('Loading groundtruth labels ...')
for fn in range(len(TRAIN_FILES)):
    _, _, label = provider.loadDataFile_cut_2(TRAIN_FILES[fn], False)
    label = np.squeeze(label)
    gt_labels[fn] = label

CLASS_NUM = 16
classes = np.zeros((CLASS_NUM, CLASS_NUM))

print('Loading cluster labels ...')
cluster_f = open("cluster_label.txt", "r")
cluster_labels = cluster_f.readlines()
cluster_labels = [int(i) for i in cluster_labels]

print('Caculating proportion ...')
for i in range(len(cluster_labels)):
    gt_l = gt_labels[i]
    ct_l = cluster_labels[i]
コード例 #3
0
def train_one_epoch(sess, ops, train_writer):
    """ ops: dict mapping from string to tf ops """
    is_training = True

    # Shuffle train files
    train_file_idxs = np.arange(0, len(TRAIN_FILES))
    np.random.shuffle(train_file_idxs)

    current_data_1 = np.empty([3 * len(TRAIN_FILES), NUM_POINT, 3],
                              dtype=float)
    current_data_2 = np.empty([3 * len(TRAIN_FILES), NUM_POINT, 3],
                              dtype=float)
    current_label = np.empty([3 * len(TRAIN_FILES), 1], dtype=int)

    fn = 0
    count = 0
    while fn < len(TRAIN_FILES) - 1:
        # log_string('----' + str(fn) + '-----')

        total_current = []
        a1, a2, _ = provider.loadDataFile_cut_2(
            TRAIN_FILES[train_file_idxs[fn]])

        idx = np.random.randint(a1.shape[0], size=NUM_POINT)
        a1 = a1[idx, :]
        idx = np.random.randint(a2.shape[0], size=NUM_POINT)
        a2 = a2[idx, :]
        total_current.append(a1)
        total_current.append(a2)

        fn = fn + 1

        b1, b2, _ = provider.loadDataFile_cut_2(
            TRAIN_FILES[train_file_idxs[fn]])

        idx = np.random.randint(b1.shape[0], size=NUM_POINT)
        b1 = b1[idx, :]
        idx = np.random.randint(b2.shape[0], size=NUM_POINT)
        b2 = b2[idx, :]
        total_current.append(b1)
        total_current.append(b2)

        fn = fn + 1

        pair_num = 0
        for index in range(len(total_current)):
            for index2 in range(index + 1, len(total_current)):
                current_data_1[6 * count +
                               pair_num, :, :] = total_current[index]
                current_data_2[6 * count +
                               pair_num, :, :] = total_current[index2]
                if (index < 2) and (index2 >= 2):
                    current_label[6 * count + pair_num, :] = 0
                else:
                    current_label[6 * count + pair_num, :] = 1

                pair_num = pair_num + 1
        count = count + 1

    current_label = np.squeeze(current_label)

    file_size = current_data_1.shape[0]
    num_batches = file_size // BATCH_SIZE

    total_correct = 0
    total_seen = 0
    loss_sum = 0

    for batch_idx in range(num_batches):
        start_idx = batch_idx * BATCH_SIZE
        end_idx = (batch_idx + 1) * BATCH_SIZE

        # shuffle each batch
        data_1 = current_data_1[start_idx:end_idx, :, :]
        data_2 = current_data_2[start_idx:end_idx, :, :]
        label = current_label[start_idx:end_idx]
        combine_data = np.concatenate((data_1, data_2), axis=2)
        combine_data, label, _ = provider.shuffle_data(combine_data,
                                                       np.squeeze(label))
        data_1 = combine_data[:, :, 0:3]
        data_2 = combine_data[:, :, 3:6]
        label = np.squeeze(label)

        # Augment batched point clouds by rotation and jittering
        rotated_data_1 = provider.rotate_point_cloud(data_1)
        jittered_data_1 = provider.jitter_point_cloud(rotated_data_1)
        jittered_data_1 = provider.random_scale_point_cloud(jittered_data_1)
        jittered_data_1 = provider.rotate_perturbation_point_cloud(
            jittered_data_1)
        jittered_data_1 = provider.shift_point_cloud(jittered_data_1)

        rotated_data_2 = provider.rotate_point_cloud(data_2)
        jittered_data_2 = provider.jitter_point_cloud(rotated_data_2)
        jittered_data_2 = provider.random_scale_point_cloud(jittered_data_2)
        jittered_data_2 = provider.rotate_perturbation_point_cloud(
            jittered_data_2)
        jittered_data_2 = provider.shift_point_cloud(jittered_data_2)

        feed_dict = {
            ops['pointclouds_pl_1']: jittered_data_1,
            ops['pointclouds_pl_2']: jittered_data_2,
            ops['labels_pl']: label,
            ops['is_training_pl']: is_training
        }
        summary, step, _, loss_val, pred_val = sess.run([
            ops['merged'], ops['step'], ops['train_op'], ops['loss'],
            ops['pred']
        ],
                                                        feed_dict=feed_dict)
        train_writer.add_summary(summary, step)
        pred_val = np.argmax(pred_val, 1)
        correct = np.sum(pred_val == label)
        total_correct += correct
        total_seen += BATCH_SIZE
        loss_sum += loss_val

        if batch_idx % 50 == 0:
            log_string('mean loss: {0:f}     accuracy: {1:f}'.format(
                loss_sum / float(batch_idx + 1),
                total_correct / float(total_seen)))

    log_string('mean loss: {0:f}     accuracy: {1:f}'.format(
        loss_sum / float(batch_idx + 1), total_correct / float(total_seen)))
コード例 #4
0
def train_one_epoch(sess, ops, train_writer):
    """ ops: dict mapping from string to tf ops """
    is_training = True

    # Shuffle train files
    train_file_idxs = np.arange(0, len(LABELS))
    np.random.shuffle(train_file_idxs)

    current_data = np.empty([len(LABELS), NUM_POINT, 3], dtype=float)
    current_label = np.empty([len(LABELS), 1], dtype=int)

    for fn in range(len(LABELS)):
        cut1, cut2, _ = provider.loadDataFile_cut_2(
            TRAIN_FILES[train_file_idxs[fn]], False)
        idx = np.random.randint(cut1.shape[0], size=NUM_POINT / 2)
        cut1 = cut1[idx, :]
        idx = np.random.randint(cut2.shape[0], size=NUM_POINT / 2)
        cut2 = cut2[idx, :]
        current_data[fn] = np.concatenate((cut1, cut2), axis=0)
        current_label[fn] = LABELS[train_file_idxs[fn]]

    current_label = np.squeeze(current_label)

    file_size = current_data.shape[0]
    num_batches = file_size // BATCH_SIZE

    total_correct = 0
    total_seen = 0
    loss_sum = 0

    for batch_idx in range(num_batches):
        start_idx = batch_idx * BATCH_SIZE
        end_idx = (batch_idx + 1) * BATCH_SIZE

        # Augment batched point clouds by rotation and jittering
        rotated_data = provider.rotate_point_cloud(
            current_data[start_idx:end_idx, :, :])
        jittered_data = provider.jitter_point_cloud(rotated_data)
        jittered_data = provider.random_scale_point_cloud(jittered_data)
        jittered_data = provider.rotate_perturbation_point_cloud(jittered_data)
        jittered_data = provider.shift_point_cloud(jittered_data)

        feed_dict = {
            ops['pointclouds_pl']: jittered_data,
            ops['labels_pl']: current_label[start_idx:end_idx],
            ops['is_training_pl']: is_training,
        }
        summary, step, _, loss_val, pred_val, feature = sess.run(
            [
                ops['merged'], ops['step'], ops['train_op'], ops['loss'],
                ops['pred'], ops['feat']
            ],
            feed_dict=feed_dict)
        train_writer.add_summary(summary, step)
        pred_val = np.argmax(pred_val, 1)
        correct = np.sum(pred_val == current_label[start_idx:end_idx])
        total_correct += correct
        total_seen += BATCH_SIZE
        loss_sum += loss_val

        if batch_idx % 100 == 0:
            log_string('mean loss: {0:f}     accuracy: {1:f}'.format(
                loss_sum / float(batch_idx + 1),
                total_correct / float(total_seen)))

    log_string('mean loss: {0:f}     accuracy: {1:f}'.format(
        loss_sum / float(batch_idx + 1), total_correct / float(total_seen)))
コード例 #5
0
ファイル: evaluate.py プロジェクト: minxuanjun/ContrastNet
def eval_one_epoch(sess, ops, num_votes=12, topk=1):
    is_training = False
    total_correct = 0
    total_seen = 0
    loss_sum = 0

    current_data_1 = np.empty([3 * len(TEST_FILES), NUM_POINT, 3], dtype=float)
    current_data_2 = np.empty([3 * len(TEST_FILES), NUM_POINT, 3], dtype=float)
    current_label = np.empty([3 * len(TEST_FILES), 1], dtype=int)

    fn = 0
    count = 0
    while fn < len(TEST_FILES) - 1:

        total_current = []
        a1, a2, _ = provider.loadDataFile_cut_2(TEST_FILES[fn])

        idx = np.random.randint(a1.shape[0], size=NUM_POINT)
        a1 = a1[idx, :]
        idx = np.random.randint(a2.shape[0], size=NUM_POINT)
        a2 = a2[idx, :]
        total_current.append(a1)
        total_current.append(a2)

        fn = fn + 1

        b1, b2, _ = provider.loadDataFile_cut_2(TEST_FILES[fn])

        idx = np.random.randint(b1.shape[0], size=NUM_POINT)
        b1 = b1[idx, :]
        idx = np.random.randint(b2.shape[0], size=NUM_POINT)
        b2 = b2[idx, :]
        total_current.append(b1)
        total_current.append(b2)

        fn = fn + 1

        pair_num = 0
        for index in range(len(total_current)):
            for index2 in range(index + 1, len(total_current)):
                current_data_1[6 * count +
                               pair_num, :, :] = total_current[index]
                current_data_2[6 * count +
                               pair_num, :, :] = total_current[index2]
                if (index < 2) and (index2 >= 2):
                    current_label[6 * count + pair_num, :] = 0
                else:
                    current_label[6 * count + pair_num, :] = 1

                pair_num = pair_num + 1
        count = count + 1

    current_label = np.squeeze(current_label)

    file_size = current_data_1.shape[0]
    num_batches = file_size // BATCH_SIZE
    log_string('file_size: %d' % (file_size))
    log_string('num_batches: %d' % (num_batches))

    for batch_idx in range(num_batches):
        start_idx = batch_idx * BATCH_SIZE
        end_idx = (batch_idx + 1) * BATCH_SIZE
        cur_batch_size = end_idx - start_idx
        log_string('batch: %d' % (batch_idx))
        # Aggregating BEG
        batch_loss_sum = 0  # sum of losses for the batch
        batch_pred_sum = np.zeros(
            (cur_batch_size, NUM_CLASSES))  # score for classes
        # batch_pred_classes = np.zeros((cur_batch_size, NUM_CLASSES)) # 0/1 for classes
        for vote_idx in range(num_votes):
            rotated_data_1 = provider.rotate_point_cloud_by_angle(
                current_data_1[start_idx:end_idx, :, :],
                vote_idx / float(num_votes) * np.pi * 2)
            rotated_data_2 = provider.rotate_point_cloud_by_angle(
                current_data_2[start_idx:end_idx, :, :],
                vote_idx / float(num_votes) * np.pi * 2)
            feed_dict = {
                ops['pointclouds_pl_1']: rotated_data_1,
                ops['pointclouds_pl_2']: rotated_data_2,
                ops['labels_pl']: current_label[start_idx:end_idx],
                ops['is_training_pl']: is_training
            }

            loss_val, pred_val, _ = sess.run(
                [ops['loss'], ops['pred'], ops['feature']],
                feed_dict=feed_dict)
            batch_pred_sum += pred_val
            # batch_pred_val = np.argmax(pred_val, 1)
            # for el_idx in range(cur_batch_size):
            #     batch_pred_classes[el_idx, batch_pred_val[el_idx]] += 1
            batch_loss_sum += (loss_val * cur_batch_size / float(num_votes))
        # pred_val_topk = np.argsort(batch_pred_sum, axis=-1)[:,-1*np.array(range(topk))-1]
        # pred_val = np.argmax(batch_pred_classes, 1)
        pred_val = np.argmax(batch_pred_sum, 1)
        # Aggregating END

        correct = np.sum(pred_val == current_label[start_idx:end_idx])
        # correct = np.sum(pred_val_topk[:,0:topk] == label_val)
        total_correct += correct
        total_seen += cur_batch_size
        loss_sum += batch_loss_sum

    log_string('eval mean loss: %f' % (loss_sum / float(total_seen)))
    log_string('eval accuracy: %f' % (total_correct / float(total_seen)))