コード例 #1
0
ファイル: train.py プロジェクト: jtpils/SpiderCNN
def train_one_epoch(sess, ops, train_writer):
    """ ops: dict mapping from string to tf ops """
    is_training = True

    # Shuffle train files
    train_file_idxs = np.arange(0, len(TRAIN_FILES))
    np.random.shuffle(train_file_idxs)

    for fn in range(len(TRAIN_FILES)):
        log_string('----' + str(fn) + '-----')
        current_data, current_label, normal_data = provider.loadDataFile_with_normal(
            TRAIN_FILES[train_file_idxs[fn]])
        normal_data = normal_data[:, 0:NUM_POINT, :]
        current_data = current_data[:, 0:NUM_POINT, :]
        current_data, current_label, shuffle_idx = provider.shuffle_data(
            current_data, np.squeeze(current_label))
        current_label = np.squeeze(current_label)
        normal_data = normal_data[shuffle_idx, ...]

        file_size = current_data.shape[0]
        num_batches = file_size // BATCH_SIZE

        total_correct = 0
        total_seen = 0
        loss_sum = 0

        for batch_idx in range(num_batches):
            start_idx = batch_idx * BATCH_SIZE
            end_idx = (batch_idx + 1) * BATCH_SIZE

            # Augment batched point clouds by rotation and jittering
            rotated_data = provider.rotate_point_cloud(
                current_data[start_idx:end_idx, :, :])
            jittered_data = provider.jitter_point_cloud(rotated_data)
            input_data = np.concatenate(
                (jittered_data, normal_data[start_idx:end_idx, :, :]), 2)
            #random point dropout
            input_data = provider.random_point_dropout(input_data)

            feed_dict = {
                ops['pointclouds_pl']: input_data,
                ops['labels_pl']: current_label[start_idx:end_idx],
                ops['is_training_pl']: is_training,
            }
            summary, step, _, loss_val, pred_val = sess.run(
                [
                    ops['merged'], ops['step'], ops['train_op'], ops['loss'],
                    ops['pred']
                ],
                feed_dict=feed_dict)
            train_writer.add_summary(summary, step)
            pred_val = np.argmax(pred_val, 1)
            correct = np.sum(pred_val == current_label[start_idx:end_idx])
            total_correct += correct
            total_seen += BATCH_SIZE
            loss_sum += loss_val

        log_string('mean loss: %f' % (loss_sum / float(num_batches)))
        log_string('accuracy: %f' % (total_correct / float(total_seen)))
コード例 #2
0
def eval_one_epoch(sess, ops, test_writer):
    """ ops: dict mapping from string to tf ops """
    global EPOCH_CNT
    is_training = False

    total_correct = 0
    total_seen = 0
    loss_sum = 0
    total_seen_class = [0 for _ in range(NUM_CLASSES)]
    total_correct_class = [0 for _ in range(NUM_CLASSES)]

    current_data, current_label, normal_data = provider.loadDataFile_with_normal(
        Data_Path + TEST_FILES[0])
    normal_data = normal_data[:, 0:NUM_POINT, :]
    current_data = current_data[:, 0:NUM_POINT, :]
    current_label = np.squeeze(current_label)
    input_data = np.concatenate((current_data, normal_data), 2)

    file_size = current_data.shape[0]
    num_batches = file_size // BATCH_SIZE

    log_string(str(datetime.now()))
    log_string('---- EPOCH %03d EVALUATION ----' % (EPOCH_CNT + 1))

    for batch_idx in range(num_batches):
        start_idx = batch_idx * BATCH_SIZE
        end_idx = (batch_idx + 1) * BATCH_SIZE

        feed_dict = {
            ops['pointclouds_pl']: input_data[start_idx:end_idx, :, :],
            ops['labels_pl']: current_label[start_idx:end_idx],
            ops['is_training_pl']: is_training
        }
        summary, step, loss_val, pred_val = sess.run(
            [ops['merged'], ops['step'], ops['loss'], ops['pred']],
            feed_dict=feed_dict)

        test_writer.add_summary(summary, step)
        pred_val = np.argmax(pred_val, 1)
        correct = np.sum(pred_val == current_label[start_idx:end_idx])
        total_correct += correct
        total_seen += BATCH_SIZE
        loss_sum += (loss_val * BATCH_SIZE)
        for i in range(start_idx, end_idx):
            l = current_label[i]
            total_seen_class[l] += 1
            total_correct_class[l] += (pred_val[i - start_idx] == l)

    log_string('eval mean loss: %f' % (loss_sum / float(total_seen)))
    log_string('eval accuracy: %f' % (total_correct / float(total_seen)))
    log_string('eval avg class acc: %f' % (np.mean(
        np.array(total_correct_class) /
        np.array(total_seen_class, dtype=np.float))))

    EPOCH_CNT += 1

    return (total_correct / float(total_seen))
コード例 #3
0
ファイル: train_xyz.py プロジェクト: weibowen555/SpiderCNN
def eval_one_epoch(sess, ops, test_writer):
    """ ops: dict mapping from string to tf ops """
    is_training = False
    total_correct = 0
    total_seen = 0
    loss_sum = 0
    total_seen_class = [0 for _ in range(NUM_CLASSES)]
    total_correct_class = [0 for _ in range(NUM_CLASSES)]
    
    for fn in range(len(TEST_FILES)):
        log_string('----' + str(fn) + '-----')
        current_data, current_label, _ = provider.loadDataFile_with_normal(TEST_FILES[fn])
        current_data = current_data[:,0:NUM_POINT,:]
        current_label = np.squeeze(current_label)

        file_size = current_data.shape[0]
        num_batches = file_size // BATCH_SIZE
        
        for batch_idx in range(num_batches):
            start_idx = batch_idx * BATCH_SIZE
            end_idx = (batch_idx+1) * BATCH_SIZE

            feed_dict = {ops['pointclouds_pl']: current_data[start_idx:end_idx, :, :],
                         ops['labels_pl']: current_label[start_idx:end_idx],
                         ops['is_training_pl']: is_training}
            summary, step, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
                ops['loss'], ops['pred']], feed_dict=feed_dict)
            pred_val = np.argmax(pred_val, 1)
            correct = np.sum(pred_val == current_label[start_idx:end_idx])
            total_correct += correct
            total_seen += BATCH_SIZE
            loss_sum += (loss_val*BATCH_SIZE)
            for i in range(start_idx, end_idx):
                l = current_label[i]
                total_seen_class[l] += 1
                total_correct_class[l] += (pred_val[i-start_idx] == l)
            
    log_string('eval mean loss: %f' % (loss_sum / float(total_seen)))
    log_string('eval accuracy: %f'% (total_correct / float(total_seen)))
    log_string('eval avg class acc: %f' % (np.mean(np.array(total_correct_class)/np.array(total_seen_class,dtype=np.float))))

    return (total_correct / float(total_seen))