コード例 #1
0
os.system('cp %s %s' %
          (os.path.join(BASE_DIR, 'train_fpointnets.py'), LOG_DIR))
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS) + '\n')
# BN_INIT_DECAY = 0.5
# BN_DECAY_DECAY_RATE = 0.5
# BN_DECAY_DECAY_STEP = float(DECAY_STEP)
# BN_DECAY_CLIP = 0.99

# Load Frustum Datasets. Use default data paths.
if FLAGS.dataset == 'kitti':
    TRAIN_DATASET = provider.FrustumDataset(
        npoints=NUM_POINT,
        split=FLAGS.train_sets,
        rotate_to_center=True,
        random_flip=True,
        random_shift=True,
        one_hot=True,
        overwritten_data_path='kitti/frustum_' + FLAGS.objtype + '_' +
        FLAGS.train_sets + '.pickle')
    TEST_DATASET = provider.FrustumDataset(
        npoints=NUM_POINT,
        split=FLAGS.val_sets,
        rotate_to_center=True,
        one_hot=True,
        overwritten_data_path='kitti/frustum_' + FLAGS.objtype + '_' +
        FLAGS.val_sets + '.pickle')
elif FLAGS.dataset == 'nuscenes2kitti':
    SENSOR = FLAGS.sensor
    overwritten_data_path_prefix = 'nuscenes2kitti/frustum_' + FLAGS.objtype + '_' + SENSOR + '_'
    TRAIN_DATASET = provider.FrustumDataset(
コード例 #2
0
elif FLAGS.objtype == 'caronly':
    n_classes = 1

# Loss
Loss = FrustumPointNetLoss()  #return_all=FLAGS.return_all_loss)

# Load Frustum Datasets.
if FLAGS.dataset == 'kitti':
    if FLAGS.data_path == None:
        overwritten_data_path = 'kitti/frustum_' + FLAGS.objtype + '_' + FLAGS.split + '.pickle'
    else:
        overwritten_data_path = FLAGS.data_path
    TEST_DATASET = provider.FrustumDataset(
        npoints=NUM_POINT,
        split='val',
        rotate_to_center=True,
        one_hot=True,
        overwritten_data_path=overwritten_data_path,
        from_rgb_detection=FLAGS.from_rgb_detection)
elif FLAGS.dataset == 'nuscenes2kitti':
    SENSOR = FLAGS.sensor
    overwritten_data_path_prefix = 'nuscenes2kitti/frustum_' + FLAGS.objtype + '_' + SENSOR + '_'
    if FLAGS.data_path == None:
        overwritten_data_path = overwritten_data_path_prefix + FLAGS.split + '.pickle'
    else:
        overwritten_data_path = FLAGS.data_path
    TEST_DATASET = provider.FrustumDataset(
        npoints=NUM_POINT,
        split='val',
        rotate_to_center=True,
        one_hot=True,
コード例 #3
0
    def detection(self, rgb_image, depth_image, fx, fy, cx, cy):
        print('start detection')
        rgb_image = rgb_image
        depth_image = np.nan_to_num(depth_image, nan=0)
        outputs = self.predictor(rgb_image)
        prob_list = outputs["instances"].scores
        class_list = outputs["instances"].pred_classes
        box2d_list = outputs["instances"].pred_boxes.tensor

        pitch = 0.09557043068606919
        rotation = np.array([[1, 0, 0], [0, np.cos(pitch), -np.sin(pitch)],
                             [0, np.sin(pitch),
                              np.cos(pitch)]])

        count = 0
        pose = np.zeros([1, 4])
        pose_list = []

        for idx in range(len(class_list)):

            object_class = class_list[idx].numpy()
            prob = prob_list[idx].numpy()
            xmin, ymin, xmax, ymax = map(int, box2d_list[idx])

            if (xmax - xmin) > 1.5 * (ymax - ymin):
                continue

            rgb = np.zeros_like(rgb_image)
            depth = np.zeros_like(depth_image)
            rgb[ymin:ymax, xmin:xmax] = rgb_image[ymin:ymax, xmin:xmax]
            depth[ymin:ymax, xmin:xmax] = depth_image[ymin:ymax, xmin:xmax]
            print("class: {} ,depth_mean: {}".format(
                object_class, np.mean(depth[ymin:ymax, xmin:xmax])))
            pcs = depth2pc(rgb, depth, fx, fy, cx, cy,
                           1).point_cloud_generator()
            pcs[:, 0:3] = np.dot(pcs[:, 0:3].astype(np.float32), rotation)
            mask = pcs[:, 2] != 0
            pcs = pcs[mask, :]
            box2d_center = np.array([(xmin + xmax) / 2.0, (ymin + ymax) / 2.0])
            uvdepth = np.zeros((1, 3))
            uvdepth[0, 0:2] = box2d_center
            uvdepth[0, 2] = np.mean(pcs[:, 2])  #20 # some random depth
            x = ((uvdepth[:, 0] - cx) * uvdepth[:, 2]) / fx
            y = ((uvdepth[:, 1] - cy) * uvdepth[:, 2]) / fy
            uvdepth[:, 0] = x
            uvdepth[:, 1] = y
            frustum_angle = -1 * np.arctan2(uvdepth[0, 2], uvdepth[
                0, 0])  # angle as to positive x-axis as in the Zoox paper

            # Pass objects that are too small
            if len(pcs) < 5:
                continue

            if object_class == 0:
                object_class = 'box'
                data = provider.FrustumDataset(npoints=2048,
                                               pcs=pcs,
                                               object_class=object_class,
                                               frustum_angle=frustum_angle,
                                               prob=prob)
                point_set, rot_angle, prob, one_hot_vec = data.data()
                point_set = torch.unsqueeze(torch.tensor(point_set),
                                            0).transpose(2, 1).float()
                one_hot_vec = torch.unsqueeze(torch.tensor(one_hot_vec),
                                              0).float()

                # print('start fpointnets')
                logits, mask, stage1_center, center_boxnet, object_pts, \
                heading_scores, heading_residuals_normalized, heading_residuals, \
                size_scores, size_residuals_normalized, size_residuals, center = \
                self.model(point_set, one_hot_vec)

                corners_3d = get_box3d_corners(center, heading_residuals,
                                               size_residuals)

                logits = logits.detach().numpy()
                mask = mask.detach().numpy()
                center_boxnet = center_boxnet.detach().numpy()
                object_pts = object_pts.detach().squeeze().numpy().transpose(
                    1, 0)
                stage1_center = stage1_center.detach().numpy()
                center = center.detach().numpy()
                heading_scores = heading_scores.detach().numpy()
                # heading_residuals_normalized = heading_residuals_normalized.detach().numpy()
                heading_residuals = heading_residuals.detach().numpy()
                size_scores = size_scores.detach().numpy()
                size_residuals = size_residuals.detach().numpy()
                corners_3d = corners_3d.detach().numpy()

                output = np.argmax(logits, 2)
                heading_class = np.argmax(heading_scores)
                size_class = np.argmax(size_scores)
                corners_3d = corners_3d[0, heading_class, size_class]
                pred_angle = provider.class2angle(
                    heading_class, heading_residuals[0, heading_class],
                    NUM_HEADING_BIN)
                pred_size = provider.class2size(size_class,
                                                size_residuals[0, size_class])

                cloud = pcs[:, 0:3].astype(np.float32)

                object_cloud = (object_pts - center_boxnet.repeat(
                    object_pts.shape[0], 0)).astype(np.float32)

                station_size = (0.979, 0.969, 0.979)
                cube = generate_station_model_with_normal(
                    np.array([[0, 0, 0]]), station_size, -pred_angle)
                station_cloud = cube.generate_points().astype(np.float32)

                cloud_icp = cicp(object_cloud,
                                 station_cloud,
                                 max_iterations=20)
                T, R, t = cloud_icp.cicp()
                cloud_t = np.tile(t, (station_cloud.shape[0], 1))
                station_cloud_rect = station_cloud[:, :3] - cloud_t

                station_cloud_rect = station_cloud_rect + center.repeat(
                    station_cloud_rect.shape[0], 0)
                object_cloud = object_cloud + center.repeat(
                    object_cloud.shape[0], 0)
                station_cloud[:, :3] = station_cloud[:, :3] + center.repeat(
                    station_cloud.shape[0], 0)

                center = center - t[np.newaxis, :]
                corners_3d_rect = box3d_corners(center, pred_angle,
                                                station_size)

                object_cloud = rotate_pc_along_y(object_cloud, -rot_angle)
                station_cloud_rect = rotate_pc_along_y(station_cloud_rect,
                                                       -rot_angle)
                station_cloud[:, :3] = rotate_pc_along_y(
                    station_cloud[:, :3], -rot_angle)
                center = rotate_pc_along_y(center, -rot_angle)
                corners_3d = rotate_pc_along_y(corners_3d, -rot_angle)
                corners_3d_rect = rotate_pc_along_y(corners_3d_rect,
                                                    -rot_angle)

                center[0, 1] = 0.815

                pose[0, :3] = center
                pose[0, 3] = pred_angle + rot_angle
                pose_list.append(pose.copy())

                count += 1
                station_rect_pub = point_cloud_publisher(
                    '/points_station_rect%d' % (count), station_cloud_rect)
                bbox_pub_rect = bbox_publisher('/bbox_rect%d' % (count),
                                               corners_3d_rect,
                                               color="green")
                object_pub = point_cloud_publisher(
                    '/points_object%d' % (count), object_cloud)

                station_rect_pub.point_cloud_publish()
                bbox_pub_rect.bbox_publish()
                object_pub.point_cloud_publish()

        pose_pub = pose_publisher('station_pose', pose_list)
        pose_pub.pose_publish()
        print('once detection')
コード例 #4
0
    def detection(self, rgb_image, depth_image, fx, fy, cx, cy):
        print('start detection')
        rgb_image = rgb_image
        depth_image = np.nan_to_num(depth_image, nan=0)
        outputs = self.predictor(rgb_image)
        prob_list = outputs["instances"].scores
        class_list = outputs["instances"].pred_classes
        box2d_list = outputs["instances"].pred_boxes.tensor

        # # v = Visualizer(rgb_image[:, :, ::-1], MetadataCatalog.get(self.cfg.DATASETS.TRAIN[0]), scale=1.2)
        # v = Visualizer(rgb_image[:, :, ::-1], metadata=self.metadata, scale=1.2)
        # out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
        # cv2.namedWindow('test',0)
        # cv2.imshow('test',out.get_image()[:, :, ::-1])
        # cv2.waitKey(0)

        # print("depth mean {}".format(np.mean(depth_image)))

        pitch = 0.09557043068606919
        rotation = np.array([[1, 0, 0], [0, np.cos(pitch), -np.sin(pitch)],
                             [0, np.sin(pitch),
                              np.cos(pitch)]])

        count = 0
        pose = np.zeros([1, 4])
        pose_list = []

        for idx in range(len(class_list)):

            object_class = class_list[idx].cpu().numpy()
            prob = prob_list[idx].cpu().numpy()
            xmin, ymin, xmax, ymax = map(int, box2d_list[idx])

            if (xmax - xmin) > 1.5 * (ymax - ymin):
                continue

            rgb = np.zeros_like(rgb_image)
            depth = np.zeros_like(depth_image)
            rgb[ymin:ymax, xmin:xmax] = rgb_image[ymin:ymax, xmin:xmax]
            depth[ymin:ymax, xmin:xmax] = depth_image[ymin:ymax, xmin:xmax]
            print("class: {} ,depth_mean: {}".format(
                object_class, np.mean(depth[ymin:ymax, xmin:xmax])))
            pcs = depth2pc(rgb, depth, fx, fy, cx, cy,
                           1).point_cloud_generator()
            pcs[:, 0:3] = np.dot(pcs[:, 0:3].astype(np.float32), rotation)
            mask = pcs[:, 2] != 0
            pcs = pcs[mask, :]
            box2d_center = np.array([(xmin + xmax) / 2.0, (ymin + ymax) / 2.0])
            uvdepth = np.zeros((1, 3))
            uvdepth[0, 0:2] = box2d_center
            uvdepth[0, 2] = np.mean(pcs[:, 2])  #20 # some random depth
            x = ((uvdepth[:, 0] - cx) * uvdepth[:, 2]) / fx
            y = ((uvdepth[:, 1] - cy) * uvdepth[:, 2]) / fy
            uvdepth[:, 0] = x
            uvdepth[:, 1] = y
            frustum_angle = -1 * np.arctan2(uvdepth[0, 2], uvdepth[
                0, 0])  # angle as to positive x-axis as in the Zoox paper

            # Pass objects that are too small
            if len(pcs) < 5:
                continue

            if object_class == 0:
                object_class = 'box'
                data = provider.FrustumDataset(npoints=2048,
                                               pcs=pcs,
                                               object_class=object_class,
                                               frustum_angle=frustum_angle,
                                               prob=prob)
                point_set, rot_angle, prob, one_hot_vec = data.data()
                point_set = torch.unsqueeze(torch.tensor(point_set),
                                            0).transpose(2, 1).float().cuda()
                one_hot_vec = torch.unsqueeze(torch.tensor(one_hot_vec),
                                              0).float().cuda()

                # print('start fpointnets')
                logits, mask, stage1_center, center_boxnet, object_pts, \
                heading_scores, heading_residuals_normalized, heading_residuals, \
                size_scores, size_residuals_normalized, size_residuals, center = \
                self.model(point_set, one_hot_vec)

                corners_3d = get_box3d_corners(center, heading_residuals,
                                               size_residuals)

                logits = logits.cpu().detach().numpy()
                mask = mask.cpu().detach().numpy()
                center_boxnet = center_boxnet.cpu().detach().numpy()
                object_pts = object_pts.cpu().detach().squeeze().numpy(
                ).transpose(1, 0)
                stage1_center = stage1_center.cpu().detach().numpy()
                center = center.cpu().detach().numpy()
                heading_scores = heading_scores.cpu().detach().numpy()
                # heading_residuals_normalized = heading_residuals_normalized.cpu().detach().numpy()
                heading_residuals = heading_residuals.cpu().detach().numpy()
                size_scores = size_scores.cpu().detach().numpy()
                size_residuals = size_residuals.cpu().detach().numpy()
                corners_3d = corners_3d.cpu().detach().numpy()

                output = np.argmax(logits, 2)
                heading_class = np.argmax(heading_scores)
                size_class = np.argmax(size_scores)
                corners_3d = corners_3d[0, heading_class, size_class]
                pred_angle = provider.class2angle(
                    heading_class, heading_residuals[0, heading_class],
                    NUM_HEADING_BIN)
                pred_size = provider.class2size(size_class,
                                                size_residuals[0, size_class])

                cloud = pcs[:, 0:3].astype(np.float32)

                object_cloud = (object_pts - center_boxnet.repeat(
                    object_pts.shape[0], 0)).astype(np.float32)

                station_size = (0.979, 0.969, 0.979)
                cube = generate_station_model_with_normal(
                    np.array([[0, 0, 0]]), station_size, -pred_angle)
                # object_cloud = rotate_pc_along_y(object_cloud,pred_angle)
                # cube = generate_station_model_with_normal(np.array([[0,0,0]]),station_size,0)
                station_cloud = cube.generate_points().astype(np.float32)
                # # object_cloud_crop = object_cloud[object_cloud[:,1]>(center[0][1]-0.48)]
                # # station_cloud_crop = station_cloud[station_cloud[:,1]>(center[0][1]-0.48)]
                # object_cloud_crop = object_cloud[object_cloud[:,1]>(-0.48)]
                # station_cloud_crop = station_cloud[station_cloud[:,1]>(-0.48)]
                # # station_cloud = rotate_pc_along_y(station_cloud, rot_angle)
                # cloud_icp = cicp(object_cloud,station_cloud_crop,max_iterations=30)
                cloud_icp = cicp(object_cloud,
                                 station_cloud,
                                 max_iterations=20)
                # cloud_icp = icp(object_cloud,station_cloud,max_iterations=20)
                T, R, t = cloud_icp.cicp()
                # R_angle = np.arccos(R[0,0])
                # print(R)
                # print(t)
                # if abs(t[0]) > abs(t[2]):
                #     t[2] = 0
                # if abs(t[0]) < abs(t[2]):
                #     t[0] = 0
                # print(t)
                cloud_t = np.tile(t, (station_cloud.shape[0], 1))
                # station_cloud_rect = np.dot(station_cloud[:,:3]-cloud_t, np.transpose(np.linalg.pinv(R)))
                # station_cloud_rect = np.dot(station_cloud[:,:3]-cloud_t, np.transpose(np.linalg.pinv(R)))
                # station_cloud[:,:3] = rotate_pc_along_y(station_cloud[:,:3],-R_angle)
                station_cloud_rect = station_cloud[:, :3] - cloud_t

                station_cloud_rect = station_cloud_rect + center.repeat(
                    station_cloud_rect.shape[0], 0)
                object_cloud = object_cloud + center.repeat(
                    object_cloud.shape[0], 0)
                station_cloud[:, :3] = station_cloud[:, :3] + center.repeat(
                    station_cloud.shape[0], 0)

                center = center - t[np.newaxis, :]
                corners_3d_rect = box3d_corners(center, pred_angle,
                                                station_size)

                object_cloud = rotate_pc_along_y(object_cloud, -rot_angle)
                station_cloud_rect = rotate_pc_along_y(station_cloud_rect,
                                                       -rot_angle)
                station_cloud[:, :3] = rotate_pc_along_y(
                    station_cloud[:, :3], -rot_angle)
                center = rotate_pc_along_y(center, -rot_angle)
                corners_3d = rotate_pc_along_y(corners_3d, -rot_angle)
                corners_3d_rect = rotate_pc_along_y(corners_3d_rect,
                                                    -rot_angle)

                center[0, 1] = 0.815

                pose[0, :3] = center
                pose[0, 3] = pred_angle + rot_angle
                pose_list.append(pose.copy())

                # # station_cloud_rect = rotate_pc_along_y(station_cloud[:,:3]-cloud_t, R_angle)
                # # cloud = np.dot(cloud, np.transpose(R))+np.tile(t,(cloud.shape[0],1))
                # object_pub = point_cloud_publisher('/points_object',object_cloud_crop)
                # station_pub = point_cloud_publisher('/points_station',station_cloud_crop[:,:3])
                count += 1
                # station_pub = point_cloud_publisher('/points_station%d'%(count),station_cloud[:,:3])
                station_rect_pub = point_cloud_publisher(
                    '/points_station_rect%d' % (count), station_cloud_rect)
                # bbox_pub = bbox_publisher('/bbox%d'%(count),corners_3d)
                bbox_pub_rect = bbox_publisher('/bbox_rect%d' % (count),
                                               corners_3d_rect,
                                               color="green")
                object_pub = point_cloud_publisher(
                    '/points_object%d' % (count), object_cloud)
                # cloud_pub = point_cloud_publisher('/points_cloud%d'%(count),cloud)
                # cloud_pub1 = point_cloud_publisher('/points_cloud1',cloud1)

                station_rect_pub.point_cloud_publish()
                bbox_pub_rect.bbox_publish()
                object_pub.point_cloud_publish()

                # bbox_list.append(bbox_pub)
                # bbox_list.append(bbox_pub_rect)
                # point_cloud_list.append(station_pub)
                # point_cloud_list.append(station_rect_pub)
                # point_cloud_list.append(object_pub)
                # point_cloud_list.append(cloud_pub)
                # with open('results.txt','ab') as f:
                #     np.savetxt(f, box_info, delimiter=" ")

                # rate = rospy.Rate(10)
                # while not rospy.is_shutdown():
                #     # point_cloud_list[3].point_cloud_publish()
                # #             # object_pub.point_cloud_publish()
                #     station_pub.point_cloud_publish()
                #     station_rect_pub.point_cloud_publish()
                #     bbox_pub.bbox_publish()
                #     bbox_pub_rect.bbox_publish()
                #     object_pub.point_cloud_publish()
                #     cloud_pub.point_cloud_publish()
                # #             # cloud_pub1.point_cloud_publish()
                #     rate.sleep()

        pose_pub = pose_publisher('station_pose', pose_list)
        pose_pub.pose_publish()
        print('once detection')