def yingyu_anwsering_situation(self): tixing = { "阅读理解(必做)": [ 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ], "完形填空(必做)": [ 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60 ], "语法填空(必做)": [61, 62, 63, 64, 65, 66, 67, 68, 69, 70], "短文改错(必做)": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80], "写作题(必做)": [81] } zsbk = { "应用文阅读(人与社会)(必做)": [21, 22, 23], "记叙文阅读(人与自我)(必做)": [24, 25, 26, 27], "说明文阅读(人与社会)(必做)": [28, 29, 30, 31], "说明性议论文阅读(人与社会)(必做)": [32, 33, 34, 35], "说明文阅读(人与自然)(必做)": [36, 37, 38, 39, 40], "动词(必做)": [41, 45, 51, 55, 56, 60], "名词(必做)": [42, 43, 46, 50, 52, 53, 57, 66, 76, 77], "形容词(必做)": [44, 47, 48, 59, 68], "动词短语搭配(必做)": [49, 54], "副词(必做)": [58, 62, 75, 79], "主从复合句(必做)": [61, 72, 63], "介词(必做)": [64, 67, 71, 78], "非谓语动词(必做)": [64, 67, 71, 78], "时态(必做)": [65], "冠词(必做)": [69, 73], "句子成分(必做)": [70], "连词(必做)": [74], "零冠词(必做)": [80], "应用文写作(必做)": [81], } khnl = { "提取与理解(必做)": [21, 22, 23, 24, 28, 29, 30, 34, 71, 76, 80], "理解与推断(必做)": [ 25, 26, 27, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 63, 65, 74, 79 ], "理解与判断(必做)": [31, 32, 36, 38, 39, 73, 77], "理解与概括(必做)": [33, 35, 37], "总结与归纳(必做)": [37, 40], "理解与分析(必做)": [61, 64, 67, 70, 72, 78], "辨认与运用(必做)": [62], "提取与辨认词性(必做)": [66], "比较与分析(必做)": [68], "分析运用冠词(必做)": [69], "辨认与分析(必做)": [75], "分析与综合(必做)": [81], } """ 原始分分析 """ df = pd.DataFrame(data=None, columns=["维度", "人数", "比率", "平均分", "标准差", "差异系数"]) if not os.path.exists("省级报告"): os.makedirs("省级报告") if not os.path.exists("省级报告/英语考生答题水平分析"): os.makedirs("省级报告/英语考生答题水平分析") lk_ks_ids, wk_ks_ids = pr.judge_ks_wenli(self.__cursor, self.__ks_ids) output_file = "省级报告/英语考生答题水平分析/原始分概括(英语).xlsx" writer = pd.ExcelWriter(output_file) # 全省 result = pr.km_total_grade_analysis(self.__cursor, self.__ks_ids, "101") result.insert(0, "总计") df.loc[len(df)] = result df.to_excel(writer, sheet_name="各类别考生比较(英语)", index=False) # 文科 df = pd.DataFrame(data=None, columns=["维度", "人数", "比率", "平均分", "标准差", "差异系数"]) result = pr.km_total_grade_analysis(self.__cursor, wk_ks_ids, "101") result.insert(0, "总计") df.loc[len(df)] = result df.to_excel(writer, sheet_name="各类别文科考生比较(英语)", index=False) # 理科 df = pd.DataFrame(data=None, columns=["维度", "人数", "比率", "平均分", "标准差", "差异系数"]) result = pr.km_total_grade_analysis(self.__cursor, lk_ks_ids, "101") result.insert(0, "总计") df.loc[len(df)] = result df.to_excel(writer, sheet_name="各类别理科考生比较(英语)", index=False) writer.save() writer.close() """ 结构分析 """ output_file = "省级报告/英语考生答题水平分析/结构分析(英语).xlsx" writer = pd.ExcelWriter(output_file) # 主客观分析 df = pd.DataFrame( data=None, columns=["主客观题", "题数", "平均分", "标准差", "难度", "区分度", "信度"]) results = pr.zkg_situation(self.__cursor, "101") """ 需要手动更改 """ results[0].insert(1, 40.00) results[1].insert(1, 21.00) results[2].insert(1, 61.00) for result in results: df.loc[len(df)] = result df.to_excel(writer, sheet_name="全省考生客观题得分(英语)", index=False) # 全省各题型得分情况 df = pd.DataFrame(data=None, columns=["题型", "题号", "分值", "平均分", "标准差", "难度"]) for key, value in tixing.items(): st = [] for i in value: st.extend(pr.get_st_ids(self.__cursor, "101", i)) result = pr.structural_st_analysis(self.__cursor, "101", st) result.insert(0, value) result.insert(0, key) df.loc[len(df)] = result df.to_excel(writer, sheet_name="全省考生各题型得分情况(英语)", index=False) # 全省各知识板块得分情况 df = pd.DataFrame(data=None, columns=["题型", "题号", "分值", "平均分", "标准差", "难度"]) for key, value in zsbk.items(): st = [] for i in value: st.extend(pr.get_st_ids(self.__cursor, "101", i)) result = pr.structural_st_analysis(self.__cursor, "101", st) result.insert(0, value) result.insert(0, key) df.loc[len(df)] = result df.to_excel(writer, sheet_name="全省考生各知识板块得分情况(英语)", index=False) # 全省各考核能力得分情况 df = pd.DataFrame(data=None, columns=["题型", "题号", "分值", "平均分", "标准差", "难度"]) for key, value in khnl.items(): st = [] for i in value: st.extend(pr.get_st_ids(self.__cursor, "101", i)) result = pr.structural_st_analysis(self.__cursor, "101", st) result.insert(0, value) result.insert(0, key) df.loc[len(df)] = result df.to_excel(writer, sheet_name="全省考生各考核能力得分情况(英语)", index=False) writer.save() writer.close() """ 单题分析 """ output_file = "省级报告/英语考生答题水平分析/单题分析(英语).xlsx" writer = pd.ExcelWriter(output_file) # 获取所有题号 st = [] for value in zsbk.values(): st.extend(value) df = pd.DataFrame(data=None, columns=["题号", "分值", "平均分", "标准差", "难度", "区分度"]) for i in st: st_ids = pr.get_st_ids(self.__cursor, "101", i) result = pr.singlel_st_analysis(self.__cursor, "101", st_ids) result.insert(0, i) df.loc[len(df)] = result df.to_excel(writer, sheet_name="考生单题作答情况(英语)", index=False) writer.save() writer.close() """ 各市情况分析 """ output_file = "省级报告/英语考生答题水平分析/各市情况分析(英语).xlsx" writer = pd.ExcelWriter(output_file) df = pd.DataFrame( data=None, columns=["城市代码", "地市名称", "人数", "比率", "平均分", "标准差", "差异系数"]) df.loc[len(df)] = pr.city_single_km(self.__cursor, "101", 0, 0) for i in self.__city_ids: result = pr.city_single_km(self.__cursor, "101", i, 0) if result[2] > 0: df.loc[len(df)] = result df.to_excel(writer, sheet_name="各市考生成绩比较(英语)", index=False) df = pd.DataFrame( data=None, columns=["城市代码", "地市名称", "人数", "比率", "平均分", "标准差", "差异系数"]) df.loc[len(df)] = pr.city_single_km(self.__cursor, "101", 0, 2) for i in self.__city_ids: result = pr.city_single_km(self.__cursor, "101", i, 2) if result[2] > 0: df.loc[len(df)] = result df.to_excel(writer, sheet_name="各市文科考生成绩比较(英语)", index=False) df = pd.DataFrame( data=None, columns=["城市代码", "地市名称", "人数", "比率", "平均分", "标准差", "差异系数"]) df.loc[len(df)] = pr.city_single_km(self.__cursor, "101", 0, 1) for i in self.__city_ids: result = pr.city_single_km(self.__cursor, "101", i, 1) if result[2] > 0: df.loc[len(df)] = result df.to_excel(writer, sheet_name="各市理科考生成绩比较(英语)", index=False) writer.save() writer.close() pr.get_single_km_picture(self.__cursor, self.__ks_ids, "101", "省级报告/英语考生答题水平分析/全省考生单科成绩分布(英语).png") pr.get_single_km_picture(self.__cursor, wk_ks_ids, "101", "省级报告/英语考生答题水平分析/全省文科考生单科成绩分布(英语).png") pr.get_single_km_picture(self.__cursor, lk_ks_ids, "101", "省级报告/英语考生答题水平分析/全省理科考生单科成绩分布(英语).png") return True
def yuwen_anwsering_situation(self): tixing = { "选择题(必做)": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 17, 18, 19], "简答题(必做)": [6, 8, 9, 15], "翻译题(必做)": [13], "压缩题(必做)": [16, 20], "作文题(必做)": [22] } zsbk = { "论述类文本阅读(必做)": [1, 2, 3], "实用类文本阅读(必做)": [4, 5, 6], "文学类文本阅读(必做)": [7, 8, 9], "文言文阅读(必做)": [10, 11, 12, 13], "古代诗歌阅读(必做)": [14, 15], "古诗文阅读(必做)": [16], "语言文字应用(必做)": [17, 18, 19, 20, 21], "写作(必做)": [22] } khnl = { "理解(必做)": [1, 10, 11, 13], "分析综合(必做)": [2, 3, 4, 5, 6, 7, 8, 12], "鉴赏评价(必做)": [9, 14, 15], "识记(必做)": [16], "表达应用(必做)": [17, 18, 19, 20, 21, 22] } """ 原始分分析 """ df = pd.DataFrame(data=None, columns=["维度", "人数", "比率", "平均分", "标准差", "差异系数"]) if not os.path.exists("省级报告"): os.makedirs("省级报告") if not os.path.exists("省级报告/语文考生答题水平分析"): os.makedirs("省级报告/语文考生答题水平分析") lk_ks_ids, wk_ks_ids = pr.judge_ks_wenli(self.__cursor, self.__ks_ids) output_file = "省级报告/语文考生答题水平分析/原始分概括(语文).xlsx" writer = pd.ExcelWriter(output_file) # 全省 result = pr.km_total_grade_analysis(self.__cursor, self.__ks_ids, "001") result.insert(0, "总计") df.loc[len(df)] = result df.to_excel(writer, sheet_name="各类别考生比较(语文)", index=False) # 文科 df = pd.DataFrame(data=None, columns=["维度", "人数", "比率", "平均分", "标准差", "差异系数"]) result = pr.km_total_grade_analysis(self.__cursor, wk_ks_ids, "001") result.insert(0, "总计") df.loc[len(df)] = result df.to_excel(writer, sheet_name="各类别文科考生比较(语文)", index=False) # 理科 df = pd.DataFrame(data=None, columns=["维度", "人数", "比率", "平均分", "标准差", "差异系数"]) result = pr.km_total_grade_analysis(self.__cursor, lk_ks_ids, "001") result.insert(0, "总计") df.loc[len(df)] = result df.to_excel(writer, sheet_name="各类别理科考生比较(语文)", index=False) writer.save() writer.close() """ 结构分析 """ output_file = "省级报告/语文考生答题水平分析/结构分析(语文).xlsx" writer = pd.ExcelWriter(output_file) # 主客观分析 df = pd.DataFrame( data=None, columns=["主客观题", "题数", "平均分", "标准差", "难度", "区分度", "信度"]) results = pr.zkg_situation(self.__cursor, "001") results[0].insert(1, 13.00) results[1].insert(1, 9.00) results[2].insert(1, 22.00) for result in results: df.loc[len(df)] = result df.to_excel(writer, sheet_name="全省考生客观题得分(语文)", index=False) # 全省各题型得分情况 df = pd.DataFrame(data=None, columns=["题型", "题号", "分值", "平均分", "标准差", "难度"]) for key, value in tixing.items(): st = [] for i in value: st.extend(pr.get_st_ids(self.__cursor, "001", i)) result = pr.structural_st_analysis(self.__cursor, "001", st) result.insert(0, value) result.insert(0, key) df.loc[len(df)] = result df.to_excel(writer, sheet_name="全省考生各题型得分情况(语文)", index=False) # 全省各知识板块得分情况 df = pd.DataFrame(data=None, columns=["题型", "题号", "分值", "平均分", "标准差", "难度"]) for key, value in zsbk.items(): st = [] for i in value: st.extend(pr.get_st_ids(self.__cursor, "001", i)) result = pr.structural_st_analysis(self.__cursor, "001", st) result.insert(0, value) result.insert(0, key) df.loc[len(df)] = result df.to_excel(writer, sheet_name="全省考生各知识板块得分情况(语文)", index=False) # 全省各考核能力得分情况 df = pd.DataFrame(data=None, columns=["题型", "题号", "分值", "平均分", "标准差", "难度"]) for key, value in khnl.items(): st = [] for i in value: st.extend(pr.get_st_ids(self.__cursor, "001", i)) result = pr.structural_st_analysis(self.__cursor, "001", st) result.insert(0, value) result.insert(0, key) df.loc[len(df)] = result df.to_excel(writer, sheet_name="全省考生各考核能力得分情况(语文)", index=False) writer.save() writer.close() """ 单题分析 """ output_file = "省级报告/语文考生答题水平分析/单题分析(语文).xlsx" writer = pd.ExcelWriter(output_file) # 获取所有题号 st = [] for value in zsbk.values(): st.extend(value) df = pd.DataFrame(data=None, columns=["题号", "分值", "平均分", "标准差", "难度", "区分度"]) for i in st: st_ids = pr.get_st_ids(self.__cursor, "001", i) result = pr.singlel_st_analysis(self.__cursor, "001", st_ids) result.insert(0, i) df.loc[len(df)] = result df.to_excel(writer, sheet_name="考生单题作答情况(语文)", index=False) writer.save() writer.close() """ 各市情况分析 """ output_file = "省级报告/语文考生答题水平分析/各市情况分析(语文).xlsx" writer = pd.ExcelWriter(output_file) df = pd.DataFrame( data=None, columns=["城市代码", "地市名称", "人数", "比率", "平均分", "标准差", "差异系数"]) df.loc[len(df)] = pr.city_single_km(self.__cursor, "001", 0, 0) for i in self.__city_ids: result = pr.city_single_km(self.__cursor, "001", i, 0) if result[2] > 0: df.loc[len(df)] = result df.to_excel(writer, sheet_name="各市考生成绩比较(语文)", index=False) df = pd.DataFrame( data=None, columns=["城市代码", "地市名称", "人数", "比率", "平均分", "标准差", "差异系数"]) df.loc[len(df)] = pr.city_single_km(self.__cursor, "001", 0, 2) for i in self.__city_ids: result = pr.city_single_km(self.__cursor, "001", i, 2) if result[2] > 0: df.loc[len(df)] = result df.to_excel(writer, sheet_name="各市文科考生成绩比较(语文)", index=False) df = pd.DataFrame( data=None, columns=["城市代码", "地市名称", "人数", "比率", "平均分", "标准差", "差异系数"]) df.loc[len(df)] = pr.city_single_km(self.__cursor, "001", 0, 1) for i in self.__city_ids: result = pr.city_single_km(self.__cursor, "001", i, 1) if result[2] > 0: df.loc[len(df)] = result df.to_excel(writer, sheet_name="各市理科考生成绩比较(语文)", index=False) writer.save() writer.close() pr.get_single_km_picture(self.__cursor, self.__ks_ids, "001", "省级报告/语文考生答题水平分析/全省考生单科成绩分布(语文).png") pr.get_single_km_picture(self.__cursor, wk_ks_ids, "001", "省级报告/语文考生答题水平分析/全省文科考生单科成绩分布(语文).png") pr.get_single_km_picture(self.__cursor, lk_ks_ids, "001", "省级报告/语文考生答题水平分析/全省理科考生单科成绩分布(语文).png") return True
def likeshuxue_anwsering_situation(self): tixing = { "选择题(必做)": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "填空题(必做)": [13, 14, 15, 16], "解答题(必做)": [17, 18, 19, 20, 21], "解答题(选做1)": [22], "解答题(选做2)": [23] } zsbk = { "集合(必做)": [1], "复数(必做)": [2], "函数(必做)": [3, 5], "相等关系与不等关系(必做)": [4], "概率(必做)": [6, 15], "平面向量(必做)": [7], "程序框图(必做)": [8], "数列(必做)": [9, 14], "解析几何(必做)": [10, 16, 19], "三角函数(必做)": [11], "立体几何(必做)": [12, 18], "导数(必做)": [13], "解三角形(必做)": [17], "函数与导数(必做)": [20], "概率与统计(必做)": [21], "坐标系与参数方程(选做1)": [22], "不等式选讲(选做2)": [23] } khnl = { "数学运算(必做)": [1, 7, 9, 13, 14], "综合能力(必做)": [2, 4, 5, 10, 12, 16, 17, 18, 19, 20, 21], "逻辑推理(必做)": [3, 8, 11, 15], "数学建模(必做)": [6], "综合能力(选做1)": [22], "综合能力(选做2)": [23] } """ 原始分分析 """ df = pd.DataFrame(data=None, columns=["维度", "人数", "比率", "平均分", "标准差", "差异系数"]) if not os.path.exists("省级报告"): os.makedirs("省级报告") if not os.path.exists("省级报告/理科数学考生答题水平分析"): os.makedirs("省级报告/理科数学考生答题水平分析") lk_ks_ids, wk_ks_ids = pr.judge_ks_wenli(self.__cursor, self.__ks_ids) output_file = "省级报告/理科数学考生答题水平分析/原始分概括(理科数学).xlsx" writer = pd.ExcelWriter(output_file) # 理科 df = pd.DataFrame(data=None, columns=["维度", "人数", "比率", "平均分", "标准差", "差异系数"]) result = pr.km_total_grade_analysis(self.__cursor, lk_ks_ids, "002") result.insert(0, "总计") df.loc[len(df)] = result df.to_excel(writer, sheet_name="各类别考生比较(理科数学)", index=False) writer.save() writer.close() """ 结构分析 """ output_file = "省级报告/理科数学考生答题水平分析/结构分析(理科数学).xlsx" writer = pd.ExcelWriter(output_file) # 主客观分析 df = pd.DataFrame( data=None, columns=["主客观题", "题数", "平均分", "标准差", "难度", "区分度", "信度"]) results = pr.zkg_situation(self.__cursor, "002") """ 需要手动更改 """ results[0].insert(1, 12.00) results[1].insert(1, 11.00) results[2].insert(1, 23.00) for result in results: df.loc[len(df)] = result df.to_excel(writer, sheet_name="全省考生客观题得分(理科数学)", index=False) # 全省各题型得分情况 df = pd.DataFrame(data=None, columns=["题型", "题号", "分值", "平均分", "标准差", "难度"]) for key, value in tixing.items(): st = [] for i in value: st.extend(pr.get_st_ids(self.__cursor, "002", i)) result = pr.structural_st_analysis(self.__cursor, "002", st) result.insert(0, value) result.insert(0, key) df.loc[len(df)] = result df.to_excel(writer, sheet_name="全省考生各题型得分情况(理科数学)", index=False) # 全省各知识板块得分情况 df = pd.DataFrame(data=None, columns=["题型", "题号", "分值", "平均分", "标准差", "难度"]) for key, value in zsbk.items(): st = [] for i in value: st.extend(pr.get_st_ids(self.__cursor, "002", i)) result = pr.structural_st_analysis(self.__cursor, "002", st) result.insert(0, value) result.insert(0, key) df.loc[len(df)] = result df.to_excel(writer, sheet_name="全省考生各知识板块得分情况(理科数学)", index=False) # 全省各考核能力得分情况 df = pd.DataFrame(data=None, columns=["题型", "题号", "分值", "平均分", "标准差", "难度"]) for key, value in zsbk.items(): st = [] for i in value: st.extend(pr.get_st_ids(self.__cursor, "002", i)) result = pr.structural_st_analysis(self.__cursor, "002", st) result.insert(0, value) result.insert(0, key) df.loc[len(df)] = result df.to_excel(writer, sheet_name="全省考生各考核能力得分情况(理科数学)", index=False) writer.save() writer.close() """ 单题分析 """ output_file = "省级报告/理科数学考生答题水平分析/单题分析(理科数学).xlsx" writer = pd.ExcelWriter(output_file) # 获取所有题号 st = [] for value in zsbk.values(): st.extend(value) df = pd.DataFrame(data=None, columns=["题号", "分值", "平均分", "标准差", "难度", "区分度"]) for i in st: st_ids = pr.get_st_ids(self.__cursor, "002", i) result = pr.singlel_st_analysis(self.__cursor, "002", st_ids) result.insert(0, i) df.loc[len(df)] = result df.to_excel(writer, sheet_name="考生单题作答情况(理科数学)", index=False) writer.save() writer.close() """ 各市情况分析 """ output_file = "省级报告/理科数学考生答题水平分析/各市情况分析(理科数学).xlsx" writer = pd.ExcelWriter(output_file) df = pd.DataFrame( data=None, columns=["城市代码", "地市名称", "人数", "比率", "平均分", "标准差", "差异系数"]) df.loc[len(df)] = pr.city_single_km(self.__cursor, "002", 0, 1) for i in self.__city_ids: result = pr.city_single_km(self.__cursor, "002", i, 1) if result[2] > 0: df.loc[len(df)] = result df.to_excel(writer, sheet_name="各市考生成绩比较(理科数学)", index=False) writer.save() writer.close() pr.get_single_km_picture(self.__cursor, lk_ks_ids, "002", "省级报告/理科数学考生答题水平分析/全省考生单科成绩分布(理科数学).png") return True
def likezonghe_anwsering_situation(self): tixing = { "单项选择题(必做)": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18], "多项选择题(必做)": [19, 20, 21], "非选择题(必做)": [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "选做题_物理(选做1)": [33], "选做题_物理(选做2)": [34], "选做题_化学(选做1)": [35], "选做题_化学(选做2)": [36], "选做题_生物(选做1)": [37], "选做题_生物(选做2)": [38] } """ 原始分分析 """ df = pd.DataFrame(data=None, columns=["维度", "人数", "比率", "平均分", "标准差", "差异系数"]) if not os.path.exists("省级报告"): os.makedirs("省级报告") if not os.path.exists("省级报告/理科综合考生答题水平分析"): os.makedirs("省级报告/理科综合考生答题水平分析") lk_ks_ids, wk_ks_ids = pr.judge_ks_wenli(self.__cursor, self.__ks_ids) output_file = "省级报告/理科综合考生答题水平分析/原始分概括(理科综合).xlsx" writer = pd.ExcelWriter(output_file) # 理科 df = pd.DataFrame(data=None, columns=["维度", "人数", "比率", "平均分", "标准差", "差异系数"]) result = pr.km_total_grade_analysis(self.__cursor, lk_ks_ids, "005") result.insert(0, "总计") df.loc[len(df)] = result df.to_excel(writer, sheet_name="各类别考生比较(理科综合)", index=False) writer.save() writer.close() """ 结构分析 """ output_file = "省级报告/理科综合考生答题水平分析/结构分析(理科综合).xlsx" writer = pd.ExcelWriter(output_file) # 主客观分析 df = pd.DataFrame( data=None, columns=["主客观题", "题数", "平均分", "标准差", "难度", "区分度", "信度"]) results = pr.zkg_situation(self.__cursor, "005") """ 手动改 """ results[0].insert(1, 21.00) results[1].insert(1, 17.00) results[2].insert(1, 38.00) for result in results: df.loc[len(df)] = result df.to_excel(writer, sheet_name="全省考生客观题得分(理科综合)", index=False) # 全省各题型得分情况 df = pd.DataFrame(data=None, columns=["题型", "题号", "分值", "平均分", "标准差", "难度"]) for key, value in tixing.items(): st = [] for i in value: st.extend(pr.get_st_ids(self.__cursor, "005", i)) result = pr.structural_st_analysis(self.__cursor, "005", st) result.insert(0, value) result.insert(0, key) df.loc[len(df)] = result df.to_excel(writer, sheet_name="全省考生各题型得分情况(理科综合)", index=False) writer.save() writer.close() """ 单题分析 """ output_file = "省级报告/理科综合考生答题水平分析/单题分析(理科综合).xlsx" writer = pd.ExcelWriter(output_file) # 获取所有题号 st = [] for value in tixing.values(): st.extend(value) df = pd.DataFrame(data=None, columns=["题号", "分值", "平均分", "标准差", "难度", "区分度"]) for i in st: st_ids = pr.get_st_ids(self.__cursor, "005", i) result = pr.singlel_st_analysis(self.__cursor, "005", st_ids) result.insert(0, i) df.loc[len(df)] = result df.to_excel(writer, sheet_name="考生单题作答情况(理科综合)", index=False) writer.save() writer.close() """ 各市情况分析 """ output_file = "省级报告/理科综合考生答题水平分析/各市情况分析(理科综合).xlsx" writer = pd.ExcelWriter(output_file) df = pd.DataFrame( data=None, columns=["城市代码", "地市名称", "人数", "比率", "平均分", "标准差", "差异系数"]) df.loc[len(df)] = pr.city_single_km(self.__cursor, "005", 0, 1) for i in self.__city_ids: result = pr.city_single_km(self.__cursor, "005", i, 1) if result[2] > 0: df.loc[len(df)] = result df.to_excel(writer, sheet_name="各市考生成绩比较(理科综合)", index=False) writer.save() writer.close() pr.get_single_km_picture(self.__cursor, lk_ks_ids, "005", "省级报告/理科综合考生答题水平分析/全省考生单科成绩分布(理科综合).png") return True