コード例 #1
0
ファイル: psf.py プロジェクト: fossabot/prysm
def _unequal_spacing_conv_core(psf1, psf2):
    '''Interpolates psf2 before using fft-based convolution

    Args:
        psf1 (prysm.PSF): PSF.  This one defines the sampling of the output.

        psf2 (prysm.PSF): PSF.  This one will have its frequency response
            truncated.

    Returns:
        PSF: a new `PSF` that is the convolution of psf1 and psf2.

    '''
    # map psf1 into the fourier domain
    ft1 = fft2(fftshift(psf1.data))
    unit1x = forward_ft_unit(psf1.sample_spacing, psf1.samples_x)
    unit1y = forward_ft_unit(psf1.sample_spacing, psf1.samples_y)
    # map psf2 into the fourier domain
    ft2 = fft2(fftshift(psf2.data))
    unit2x = forward_ft_unit(psf2.sample_spacing, psf2.samples_x)
    unit2y = forward_ft_unit(psf2.sample_spacing, psf2.samples_y)
    ft3 = ifftshift(resample_2d_complex(fftshift(ft2), (unit2y, unit2x), (unit1y, unit1x)))
    psf3 = PSF(data=abs(ifftshift(ifft2(ft1 * ft3))),
               sample_spacing=psf1.sample_spacing)
    return psf3._renorm()
コード例 #2
0
ファイル: propagation.py プロジェクト: samkberry/prysm
def prop_pupil_plane_to_psf_plane(wavefunction, Q, incoherent=True, norm=None):
    """Propagate a pupil plane to a PSF plane and compute the grid along which the PSF exists.

    Parameters
    ----------
    wavefunction : `numpy.ndarray`
        the pupil wavefunction
    Q : `float`
        oversampling / padding factor
    incoherent : `bool`, optional
        whether to return the incoherent (real valued) PSF, or the
        coherent (complex-valued) PSF.  Incoherent = |coherent|^2
    norm : `str`, {None, 'ortho'}
        normalization parameter passed directly to numpy/cupy fft

    Returns
    -------
    psf : `numpy.ndarray`
        incoherent point spread function

    """
    padded_wavefront = pad2d(wavefunction, Q)
    impulse_response = m.ifftshift(
        m.fft2(m.fftshift(padded_wavefront), norm=norm))
    if incoherent:
        return abs(impulse_response)**2
    else:
        return impulse_response
コード例 #3
0
ファイル: psf.py プロジェクト: fossabot/prysm
def convpsf(psf1, psf2):
    '''Convolves two PSFs.

    Args:
        psf1 (prysm.PSF): first PSF.

        psf2 (prysm.PSF): second PSF.

    Returns:
        PSF: A new `PSF` that is the convolution of psf1 and psf2.

    Notes:
        The PSF with the lower nyquist frequency defines the sampling of the
            output.  The PSF with a higher nyquist will be truncated in the
            frequency domain (without aliasing) and projected onto the
            sampling grid of the PSF with a lower nyquist.

    '''
    if psf2.samples_x == psf1.samples_x and \
       psf2.samples_y == psf1.samples_y and \
       psf2.sample_spacing == psf1.sample_spacing:
        # no need to interpolate, use FFTs to convolve
        psf3 = PSF(data=abs(ifftshift(ifft2(fft2(psf1.data) * fft2(psf2.data)))),
                   sample_spacing=psf1.sample_spacing)
        return psf3._renorm()
    else:
        # need to interpolate, suppress all frequency content above nyquist for the less sampled psf
        if psf1.sample_spacing > psf2.sample_spacing:
            # psf1 has the lower nyquist, resample psf2 in the fourier domain to match psf1
            return _unequal_spacing_conv_core(psf1, psf2)
        else:
            # psf2 has lower nyquist, resample psf1 in the fourier domain to match psf2
            return _unequal_spacing_conv_core(psf2, psf1)
コード例 #4
0
ファイル: psf.py プロジェクト: fossabot/prysm
    def from_pupil(pupil, efl, padding=1):
        ''' Uses scalar diffraction propogation to generate a PSF from a pupil.

        Args:
            pupil (prysm.Pupil): Pupil, with OPD data and wavefunction.

            efl (float): effective focal length of the optical system.

            padding (number): number of pupil widths to pad each side of the
                pupil with during computation.

        Returns:
            PSF.  A new PSF instance.

        '''
        # padded pupil contains 1 pupil width on each side for a width of 3
        psf_samples = (pupil.samples * padding) * 2 + pupil.samples
        sample_spacing = pupil_sample_to_psf_sample(pupil_sample=pupil.sample_spacing * 1000,
                                                    num_samples=psf_samples,
                                                    wavelength=pupil.wavelength,
                                                    efl=efl)
        padded_wavefront = pad2d(pupil.fcn, padding)
        impulse_response = ifftshift(fft2(fftshift(padded_wavefront)))
        psf = abs(impulse_response)**2
        return PSF(psf / np.max(psf), sample_spacing)
コード例 #5
0
ファイル: interferogram.py プロジェクト: chllym/prysm
def bandreject_filter(array, sample_spacing, wllow, wlhigh):
    sy, sx = array.shape

    # compute the bandpass in sample coordinates
    ux, uy = forward_ft_unit(sample_spacing,
                             sx), forward_ft_unit(sample_spacing, sy)
    fhigh, flow = 1 / wllow, 1 / wlhigh

    # make an ordinate array in frequency space and use it to make a mask
    uxx, uyy = m.meshgrid(ux, uy)
    highpass = ((uxx < -fhigh) | (uxx > fhigh)) | ((uyy < -fhigh) |
                                                   (uyy > fhigh))
    lowpass = ((uxx > -flow) & (uxx < flow)) & ((uyy > -flow) & (uyy < flow))
    mask = highpass | lowpass

    # adjust NaNs and FFT
    work = array.copy()
    work[~m.isfinite(work)] = 0
    fourier = m.fftshift(m.fft2(m.ifftshift(work)))
    fourier[mask] = 0
    out = m.fftshift(m.ifft2(m.ifftshift(fourier)))
    return out.real
コード例 #6
0
ファイル: propagation.py プロジェクト: chllym/prysm
def prop_pupil_plane_to_psf_plane(wavefunction, Q, norm=None):
    """Propagate a pupil plane to a PSF plane and compute the grid along which the PSF exists.

    Parameters
    ----------
    wavefunction : `numpy.ndarray`
        the pupil wavefunction
    Q : `float`
        oversampling / padding factor
    norm : `str`, {None, 'ortho'}
        normalization parameter passed directly to numpy/cupy fft

    Returns
    -------
    psf : `numpy.ndarray`
        incoherent point spread function

    """
    padded_wavefront = pad2d(wavefunction, Q)
    impulse_response = m.ifftshift(m.fft2(m.fftshift(padded_wavefront), norm=norm))
    return abs(impulse_response) ** 2
コード例 #7
0
ファイル: interferogram.py プロジェクト: samkberry/prysm
def psd(height, sample_spacing, window=None):
    """Compute the power spectral density of a signal.

    Parameters
    ----------
    height : `numpy.ndarray`
        height or phase data
    sample_spacing : `float`
        spacing of samples in the input data
    window : {'welch', 'hann'} or ndarray, optional

    Returns
    -------
    unit_x : `numpy.ndarray`
        ordinate x frequency axis
    unit_y : `numpy.ndarray`
        ordinate y frequency axis
    psd : `numpy.ndarray`
        power spectral density

    Notes
    -----
    See GH_FFT for a rigorous treatment of FFT scalings
    https://holometer.fnal.gov/GH_FFT.pdf

    """
    window = make_window(height, sample_spacing, window)
    fft = m.ifftshift(m.fft2(m.fftshift(height * window)))
    psd = abs(fft)**2  # mag squared first as per GH_FFT

    fs = 1 / sample_spacing
    S2 = (window**2).sum()
    coef = S2 * fs * fs
    psd /= coef

    ux = forward_ft_unit(sample_spacing, height.shape[1])
    uy = forward_ft_unit(sample_spacing, height.shape[0])
    return ux, uy, psd
コード例 #8
0
ファイル: interferogram.py プロジェクト: samkberry/prysm
def synthesize_surface_from_psd(psd, nu_x, nu_y):
    """Synthesize a surface height map from PSD data.

    Parameters
    ----------
    psd : `numpy.ndarray`
        PSD data, units nm²/(cy/mm)²
    nu_x : `numpy.ndarray`
        x spatial frequency, cy/mm
    nu_y : `numpy.ndarray`
        y spatial frequency, cy_mm

    """
    # generate a random phase to be matched to the PSD
    randnums = m.rand(*psd.shape)
    randfft = m.fft2(randnums)
    phase = m.angle(randfft)


    # calculate the output window
    # the 0th element of nu_y has the greatest frequency in magnitude because of
    # the convention to put the nyquist sample at -fs instead of +fs for even-size arrays
    fs = -2 * nu_y[0]
    dx = dy = 1 / fs
    ny, nx = psd.shape
    x, y = m.arange(nx) * dx, m.arange(ny) * dy

    # calculate the area of the output window, "S2" in GH_FFT notation
    A = x[-1] * y[-1]

    # use ifft to compute the PSD
    signal = m.exp(1j * phase) * m.sqrt(A * psd)

    coef = 1 / dx / dy
    out = m.ifftshift(m.ifft2(m.fftshift(signal))) * coef
    out = out.real
    return x, y, out