コード例 #1
0
ファイル: test_sample.py プロジェクト: jeffrey-hokanson/PSDR
def no_test_lipschitz_sample(N = 5, m = 3):
	dom = BoxDomain(-np.ones(m), np.ones(m))
	# Add an inequality constraint so some combinations aren't feasible
	dom = dom.add_constraints(A = np.ones((1,m)), b = np.ones(1))
	Ls = [np.random.randn(1,m) for j in range(2)]

	# Limit the number of iterations to reduce computational cost
	X = psdr.lipschitz_sample(dom, N, Ls, maxiter = 3, jiggle = False)
	print(X)
	assert np.all(dom.isinside(X))

	# Verify that each point is distinct in projections
	for L in Ls:
		y = L.dot(X.T).T
		print(y)
		assert np.min(pdist(y)) > 0, "points not distinct in projection"
コード例 #2
0
ファイル: test_sample.py プロジェクト: jeffrey-hokanson/PSDR
def test_initial_sample(m = 10):
	dom = BoxDomain(-np.ones(m), np.ones(m))
	L1 = np.random.randn(1,m)
	L2 = np.random.randn(2,m)
	L3 = np.random.randn(3,m)

	Nsamp = 100
	for L in [L1, L2, L3]:
		# Standard uniform sampling
		X1 = dom.sample(Nsamp)
		LX1 = L.dot(X1.T).T
		d1 = pdist(LX1)

		# initial sample algorithm
		X2 = initial_sample(dom, L, Nsamp = Nsamp)
		assert np.all(dom.isinside(X2))
		LX2 = L.dot(X2.T).T
		d2 = pdist(LX2)
		print("uniform sampling mean distance", np.mean(d1), 'min', np.min(d1))
		print("initial sampling mean distance", np.mean(d2), 'min', np.min(d2))
		assert np.mean(d2) > np.mean(d1), "Initial sampling ineffective"