コード例 #1
0
ファイル: test_khi_solver.py プロジェクト: tberlok/psecas
def test_kh_uniform_solution(show=False, verbose=False):
    """Test eigenvalue solver using FourierGrid"""
    import numpy as np
    from psecas import Solver, FourierGrid
    from psecas.systems.kh_uniform import KelvinHelmholtzUniform

    grid = FourierGrid(N=64, zmin=0, zmax=2)

    system = KelvinHelmholtzUniform(grid, beta=1e4, nu=1e-2, kx=3.52615254237)
    system.u0 = 1.

    solver = Solver(grid, system)

    Ns = np.hstack((np.arange(2, 16) * 32, np.arange(2, 12) * 64))
    for useOPinv in [True, False]:
        omega, v, err = solver.iterate_solver(Ns,
                                              tol=1e-5,
                                              useOPinv=useOPinv,
                                              verbose=verbose)
    np.testing.assert_allclose(1.66548246011, omega, atol=1e-5)

    if show:
        from psecas import plot_solution

        plot_solution(system, smooth=True, num=2)

    # Check that information converged is set to False when solver does not converge
    solver.iterate_solver(np.arange(1, 3) * 16,
                          tol=1e-16,
                          useOPinv=useOPinv,
                          verbose=verbose)
    assert solver.system.result['converged'] is False

    return err
コード例 #2
0
def test_mti_solution(show=False, verbose=False):
    """Test eigenvalue solver using ChebyshevExtremaGrid"""
    import numpy as np
    from psecas import Solver, ChebyshevExtremaGrid
    from psecas.systems.mti import MagnetoThermalInstability

    grid = ChebyshevExtremaGrid(N=64, zmin=0, zmax=1)

    system = MagnetoThermalInstability(grid, beta=1e5, Kn0=200, kx=4 * np.pi)
    system.beta = 1e5
    system.Kn0 = 200

    assert system.Kn0 == 200
    assert system.beta == 1e5

    solver = Solver(grid, system)

    Ns = np.hstack(np.arange(1, 10) * 16)
    mode = 0
    omega, vec, err = solver.iterate_solver(Ns,
                                            mode=mode,
                                            tol=1e-8,
                                            verbose=verbose)

    system.get_bx_and_by()

    if show:
        from psecas import plot_solution

        phi = np.arctan(vec[2].imag / vec[2].real)
        solver.keep_result(omega, vec * np.exp(-1j * phi), mode=mode)

        plot_solution(system, smooth=True, num=1)

    np.testing.assert_allclose(1.7814514515967603, omega, atol=1e-8)

    return err
コード例 #3
0
        Nz=256,
        Lz=2.0,
        path="./",
        name="khi_hydro_delta",
    )

    # Print out some information
    Lx = 2 * np.pi / system.kx
    print('')
    print('Eigenvalue is:', omega)
    print('Lx should be:', Lx)

    # Make a plot
    plt.figure(1)
    plt.plot(kxmax, omega.real, "+")
    plot_solution(system, filename='./khi_hydro_delta.pdf')

    # Write files for loading into Athena
    s = system
    c_dic = {}
    for key in s.variables:
        c_dic.update({key: s.grid.to_coefficients(s.result[key])})

    perturb = []
    for key in ['drho', 'dvx', 'dvz', 'dT']:

        perturb.append(c_dic[key].real)
        perturb.append(c_dic[key].imag)

    perturb = np.transpose(perturb)
    np.savetxt(
コード例 #4
0
ファイル: khi_nu.py プロジェクト: tberlok/psecas
for key in system.variables:
    system.result[key] /= val

# Save system pickle object
save_system(system, "./khi_nu.p")

# Print out some information
Lx = 2 * np.pi / system.kx
print('')
print('Eigenvalue is:', omega)
print('Lx should be:', Lx)

# Make a plot
plt.figure(1)
plt.plot(kxmax, omega.real, "+")
plot_solution(system, filename='./khi_nu.pdf')

# Write files for loading into Athena
s = system
c_dic = {}
for key in s.variables:
    c_dic.update({key: s.grid.to_coefficients(s.result[key])})

perturb = []
for key in ['drho', 'dvx', 'dvz', 'dT', 'dA']:

    perturb.append(c_dic[key].real)
    perturb.append(c_dic[key].imag)

perturb = np.transpose(perturb)
np.savetxt(
コード例 #5
0
ファイル: hall_mri.py プロジェクト: tberlok/psecas
system.add_equation(
    "-r*r*sigma*bphi = - 1j*kz*r*r*vphi - 1j*kz*q*r**(2-q)*Aphi - eta*(Drbphi) - lh*va*1j*kz*(DrAphi)"
)

# The boundary conditions
Aphi_bound = 'r**2*dr(dr(Aphi)) + r*dr(Aphi) - Aphi = 0'
system.add_boundary('vr', 'Dirichlet', 'Dirichlet')
system.add_boundary('vphi', 'Dirichlet', 'Dirichlet')
system.add_boundary('vz', 'Neumann', 'Neumann')
system.add_boundary('Aphi', Aphi_bound, Aphi_bound)
system.add_boundary('bphi', 'Dirichlet', 'Dirichlet')

system.add_substitution(
    'DrAphi = r*r*dr(dr(Aphi)) + r*dr(Aphi) - Aphi - kz**2*r*r*Aphi')
system.add_substitution(
    'Drbphi = r*r*dr(dr(bphi)) + r*dr(bphi) - bphi - kz**2*r*r*bphi')

solver = Solver(grid, system)

mode = 0
Ns = np.arange(1, 32) * 32 - 1
omega, vec, err = solver.iterate_solver(Ns, mode=mode, verbose=True, tol=1e-4)
phi = np.arctan(vec[2].imag / vec[2].real)
solver.keep_result(omega, vec * np.exp(-1j * phi), mode=mode)

if isinstance(grid, ChebyshevTLnGrid):
    plot_solution(system, limits=[0, 1.5])
    plt.xlim(0, 1.5)
else:
    plot_solution(system)
コード例 #6
0
ファイル: test_mri_solution.py プロジェクト: tberlok/psecas
def test_mri_solution(show=False, verbose=False):
    """Test eigenvalue solver using ChebyshevExtremaGrid"""
    import numpy as np
    from psecas import Solver, ChebyshevExtremaGrid, System

    class HallMRI(System):
        def __init__(self, grid, kz, variables, eigenvalue):
            # Set parameters
            self.q = 1.5
            self.eta = 0.003
            self.lh = 1
            self.h = 0.25
            self.va = 0.002
            self.kz = kz

            super().__init__(grid, variables, eigenvalue)

    # Create a grid
    grid = ChebyshevExtremaGrid(N=128, zmin=1, zmax=2, z='r')

    variables = ['rho', 'vr', 'vphi', 'vz', 'Aphi', 'bphi']

    kz = 2 * np.pi

    # Create the system
    system = HallMRI(grid, kz, variables=variables, eigenvalue='sigma')

    # The linearized equations
    system.add_equation("-r*sigma*rho = r*dr(vr) + vr + 1j*kz*r*vz")
    system.add_equation(
        "-r*r*sigma*vr = - 2*r**(2-q)*vphi + h**2*r*r*dr(rho) + va**2*(DrAphi)"
    )
    system.add_equation("-sigma*vphi = + (2-q)*r**(-q)*vr - va**2*1j*kz*bphi")
    system.add_equation("-sigma*vz = h**2*1j*kz*rho")
    system.add_equation(
        "-r*r*sigma*Aphi = + r*r*vr - eta*(DrAphi) + lh*va*1j*kz*r*r*bphi")
    system.add_equation(
        "-r*r*sigma*bphi = - 1j*kz*r*r*vphi - 1j*kz*q*r**(2-q)*Aphi - eta*(Drbphi) - lh*va*1j*kz*(DrAphi)"
    )

    # The boundary conditions
    Aphi_bound = 'r**2*dr(dr(Aphi)) + r*dr(Aphi) - Aphi = 0'
    system.add_boundary('vr', 'Dirichlet', 'Dirichlet')
    system.add_boundary('vphi', 'Dirichlet', 'Dirichlet')
    system.add_boundary('vz', 'Neumann', 'Neumann')
    system.add_boundary('Aphi', Aphi_bound, Aphi_bound)
    system.add_boundary('bphi', 'Dirichlet', 'Dirichlet')

    # Short hands for long expressions for derivatives
    system.add_substitution(
        'DrAphi = r*r*dr(dr(Aphi)) + r*dr(Aphi) - Aphi - kz**2*r*r*Aphi')
    system.add_substitution(
        'Drbphi = r*r*dr(dr(bphi)) + r*dr(bphi) - bphi - kz**2*r*r*bphi')

    solver = Solver(grid, system)

    mode = 0
    Ns = np.hstack(np.arange(1, 10) * 32)
    omega, vec, err = solver.iterate_solver(Ns,
                                            mode=mode,
                                            tol=1e-8,
                                            verbose=verbose)

    if show:
        from psecas import plot_solution

        phi = np.arctan(vec[2].imag / vec[2].real)
        solver.keep_result(omega, vec * np.exp(-1j * phi), mode=mode)

        plot_solution(system, smooth=True, num=1)

    np.testing.assert_allclose(0.09892641, omega, atol=1e-8)

    return err
コード例 #7
0
    import numpy as np
    from psecas import Solver, LegendreExtremaGrid
    import matplotlib.pyplot as plt
    from psecas import plot_solution

    grid = LegendreExtremaGrid(N=200, zmin=-0.5, zmax=0.5)
    system = KelvinHelmholtzMiura(grid, kx=2*np.pi, B=0.2, z1=0, a=1/25.0)
    solver = Solver(grid, system)

    Ns = np.arange(1, 8) * 64
    omega, v, err = solver.iterate_solver(Ns, verbose=True, tol=1e-8)

    print('\nB={:1.2f} has gammma*2a = {:1.6f}'.format(system.B,
                                                       omega.real*system.a*2))

    plot_solution(system, num=1, filename='Ryu_and_Frank1996.pdf')

    # Make figure 4 in Miura & Pritchett (1982)
    # This calculation takes some time.
    if True:

        # The iterative solver is more precise but slow at high kx
        # Set fast=True to instead run with a fixed grid size and get a figure
        # much faster. The result looks okay but is imprecise at high k!
        fast = False

        plt.figure(2)
        plt.clf()

        for B in [1e-8, 0.2, 0.3, 0.4]:
            system = KelvinHelmholtzMiura(grid, 2*np.pi, B=B, z1=0, a=1/20.0)
コード例 #8
0
ファイル: hbi.py プロジェクト: tberlok/psecas
beta = 1e5
Kn = 1 / 1500.
kx = 250

system = HeatFluxDrivenBuoyancyInstability(grid, beta, Kn, kx)

solver = Solver(grid, system)

mode = 2
Ns = np.hstack((np.arange(2, 5) * 16, np.arange(3, 12) * 32))
omega, vec, err = solver.iterate_solver(Ns, mode=mode, verbose=True, tol=1e-5)
phi = np.arctan(vec[2].imag / vec[2].real)
solver.keep_result(omega, vec * np.exp(-1j * phi), mode=mode)

plot_solution(system, smooth=True)


if True:
    # Plot 2D maps of the perturbations
    import matplotlib.pyplot as plt
    from psecas import get_2Dmap

    plt.rc("image", origin="lower", cmap="RdBu")
    plt.figure(2)
    plt.clf()
    fig, axes = plt.subplots(num=2, sharex=True, sharey=True, ncols=4)
    xmin = 0
    xmax = grid.zmax/10
    Nx = 512
    Nz = 1024
コード例 #9
0
        drhodz_sym = sym.diff(rho_sym, z)
        domgdz_sym = sym.diff(Omg_sym, z)

        zg = self.grid.zg
        self.rho = np.ones_like(zg) * lambdify(z, rho_sym)(zg)
        self.Omg = np.ones_like(zg) * lambdify(z, Omg_sym)(zg)
        self.shr = np.ones_like(zg) * lambdify(z, shr_sym)(zg)
        self.drhodz = np.ones_like(zg) * lambdify(z, drhodz_sym)(zg)
        self.domgdz = np.ones_like(zg) * lambdify(z, domgdz_sym)(zg)


# Create a grid
grid = ChebyshevRationalGrid(N=200, C=0.2)
# grid = ChebyshevExtremaGrid(N=199, zmin=-5, zmax=5)

# Create the system
system = VerticalShearInstability(grid,
                                  variables=['rh', 'wx', 'wy', 'wz'],
                                  eigenvalue='sigma')

# The linearized equations
system.add_equation("-sigma*rh = - 1j*kx*wx - 1/h*dz(wz) - 1/h*drhodz/rho*wz")
system.add_equation("-sigma*wx = + 2*Omg*wy - 1j*kx*(h/O0)**2*rh")
system.add_equation("-sigma*wy = - (2*Omg + shr)*wx - 1/h*domgdz*wz")
system.add_equation("-sigma*wz = - h/O0**2*dz(rh)", boundary=True)

solver = Solver(grid, system, do_gen_evp=True)

omega, vec = solver.solve(mode=0, verbose=True)
plot_solution(system)
コード例 #10
0
plt.rc("image", origin="lower", cmap="RdBu", interpolation="None")

extent = [xmin, xmax, zmin, zmax]

phi = np.arctan(vec[2].imag / vec[2].real)
solver.keep_result(omega, vec * np.exp(-1j * phi), mode=0)

# Normalize eigenmodes
y = np.vstack([
    system.result["dvx"].real,
    system.result["dvx"].imag,
    system.result["dvz"].real,
    system.result["dvz"].imag,
])

limits = [-2, 2]

plot_solution(system, num=1, limits=limits, smooth=True)
plt.xlim(limits[0], limits[1])

maps = {
    key: get_2Dmap(system, key, xmin, xmax, Nx, Nz, zmin=zmin, zmax=zmax)
    for key in system.variables
}

plt.figure(2)
plt.clf()
fig, axes = plt.subplots(num=2)
axes.imshow(maps["dT"] + maps["drho"], extent=extent)
コード例 #11
0
    for key in system.variables:
        system.result[key] /= val

    # Save system pickle object
    save_system(system, "./khi_mhd_beta5.p")

    # Print out some information
    Lx = 2 * np.pi / system.kx
    print('')
    print('Eigenvalue is:', omega)
    print('Lx should be:', Lx)

    # Make a plot
    plt.figure(1)
    plt.plot(kxmax, omega.real, "+")
    plot_solution(system, filename='./khi_mhd_beta5.pdf')

    # Write files for loading into Athena
    s = system
    c_dic = {}
    for key in s.variables:
        c_dic.update({key: s.grid.to_coefficients(s.result[key])})

    perturb = []
    for key in ['drho', 'dvx', 'dvz', 'dT', 'dA']:

        perturb.append(c_dic[key].real)
        perturb.append(c_dic[key].imag)

    perturb = np.transpose(perturb)
    np.savetxt(