コード例 #1
0
ファイル: procutil.py プロジェクト: lcyyork/psi4
def prepare_options_for_set_options():
    """Capture current state of C++ psi4.core.Options information for reloading by `psi4.set_options()`.

    Returns
    -------
    dict
        Dictionary where keys are option names to be set globally or module__option
        mangled names to be set locally. Values are option values.

    """
    flat_options = {}
    has_changed_snapshot = {module: core.options_to_python(module) for module in _modules}

    for opt in core.get_global_option_list():

        handled_locally = False
        ghoc = core.has_global_option_changed(opt)
        opt_snapshot = {k: v[opt] for k, v in has_changed_snapshot.items() if opt in v}
        for module, (lhoc, ohoc) in opt_snapshot.items():
            if ohoc:
                if lhoc:
                    key = module + '__' + opt
                    val = core.get_local_option(module, opt)
                else:
                    key = opt
                    val = core.get_global_option(opt)
                    handled_locally = True
                flat_options[key] = val

        if ghoc and not handled_locally:
            # some options are globals section (not level) so not in any module
            flat_options[opt] = core.get_global_option(opt)

    return flat_options
コード例 #2
0
    def __init__(self, option: str, module: Optional[str] = None):
        self.option = option.upper()
        if module:
            self.module = module.upper()
        else:
            self.module = None

        self.value_global = core.get_global_option(option)
        self.haschanged_global = core.has_global_option_changed(option)
        if self.module:
            self.value_local = core.get_local_option(self.module, option)
            self.haschanged_local = core.has_local_option_changed(self.module, option)
            self.value_used = core.get_option(self.module, option)
            self.haschanged_used = core.has_option_changed(self.module, option)
        else:
            self.value_local = None
            self.haschanged_local = None
            self.value_used = None
            self.haschanged_used = None
コード例 #3
0
ファイル: optproc.py プロジェクト: SebWouters/psi4
    def __init__(self, option, module=None):
        self.option = option.upper()
        if module:
            self.module = module.upper()
        else:
            self.module = None

        self.value_global = core.get_global_option(option)
        self.haschanged_global = core.has_global_option_changed(option)
        if self.module:
            self.value_local = core.get_local_option(self.module, option)
            self.haschanged_local = core.has_local_option_changed(self.module, option)
            self.value_used = core.get_option(self.module, option)
            self.haschanged_used = core.has_option_changed(self.module, option)
        else:
            self.value_local = None
            self.haschanged_local = None
            self.value_used = None
            self.haschanged_used = None
コード例 #4
0
ファイル: frac.py プロジェクト: yxie326/psi4
def frac_traverse(name, **kwargs):
    """Scan electron occupancy from +1 electron to -1.

    Parameters
    ----------
    name : string or function
        DFT functional string name or function defining functional
        whose omega is to be optimized.
    molecule : :ref:`molecule <op_py_molecule>`, optional
        Target molecule (neutral) for which omega is to be tuned, if not last defined.
    cation_mult : int, optional
        Multiplicity of cation, if not neutral multiplicity + 1.
    anion_mult : int, optional
        Multiplicity of anion, if not neutral multiplicity + 1.
    frac_start : int, optional
        Iteration at which to start frac procedure when not reading previous
        guess. Defaults to 25.
    HOMO_occs : list, optional
        Occupations to step through for cation, by default `[1 - 0.1 * x for x in range(11)]`.
    LUMO_occs : list, optional
        Occupations to step through for anion, by default `[1 - 0.1 * x for x in range(11)]`.
    H**O : int, optional
        Index of H**O.
    LUMO : int, optional
        Index of LUMO.
    frac_diis : bool, optional
        Do use DIIS for non-1.0-occupied points?
    neutral_guess : bool, optional
        Do use neutral orbitals as guess for the anion?
    hf_guess: bool, optional
        Do use UHF guess before UKS?
    continuous_guess : bool, optional
        Do carry along guess rather than reguessing at each occupation?
    filename : str, optional
        Result filename, if not name of molecule.

    Returns
    -------
    dict
        Dictionary associating SCF energies with occupations.

    """
    optstash = p4util.OptionsState(
        ['SCF', 'GUESS'],
        ['SCF', 'DF_INTS_IO'],
        ['SCF', 'REFERENCE'],
        ["SCF", "FRAC_START"],
        ["SCF", "FRAC_RENORMALIZE"],
        #["SCF", "FRAC_LOAD"],
        ["SCF", "FRAC_OCC"],
        ["SCF", "FRAC_VAL"],
        ["SCF", "FRAC_DIIS"])
    kwargs = p4util.kwargs_lower(kwargs)

    # Make sure the molecule the user provided is the active one, and neutral
    molecule = kwargs.pop('molecule', core.get_active_molecule())
    molecule.update_geometry()

    if molecule.molecular_charge() != 0:
        raise ValidationError(
            """frac_traverse requires neutral molecule to start.""")
    if molecule.schoenflies_symbol() != 'c1':
        core.print_out(
            """  Requested procedure `frac_traverse` does not make use of molecular symmetry: """
            """further calculations in C1 point group.\n""")
    molecule = molecule.clone()
    molecule.reset_point_group('c1')
    molecule.update_geometry()

    charge0 = molecule.molecular_charge()
    mult0 = molecule.multiplicity()

    chargep = charge0 + 1
    chargem = charge0 - 1

    multp = kwargs.get('cation_mult', mult0 + 1)
    multm = kwargs.get('anion_mult', mult0 + 1)

    # By default, we start the frac procedure on the 25th iteration
    # when not reading a previous guess
    frac_start = kwargs.get('frac_start', 25)

    # By default, we occupy by tenths of electrons
    HOMO_occs = kwargs.get(
        'HOMO_occs', [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0])
    LUMO_occs = kwargs.get(
        'LUMO_occs', [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0])

    # By default, H**O and LUMO are both in alpha
    Z = 0
    for A in range(molecule.natom()):
        Z += molecule.Z(A)
    Z -= charge0
    H**O = kwargs.get('H**O', (Z / 2 + 1 if (Z % 2) else Z / 2))
    LUMO = kwargs.get('LUMO', H**O + 1)

    # By default, DIIS in FRAC (1.0 occupation is always DIIS'd)
    frac_diis = kwargs.get('frac_diis', True)

    # By default, use the neutral orbitals as a guess for the anion
    neutral_guess = kwargs.get('neutral_guess', True)

    # By default, burn-in with UHF first, if UKS
    hf_guess = False
    if core.get_local_option('SCF', 'REFERENCE') == 'UKS':
        hf_guess = kwargs.get('hf_guess', True)

    # By default, re-guess at each N
    continuous_guess = kwargs.get('continuous_guess', False)

    # By default, drop the files to the molecule's name
    root = kwargs.get('filename', molecule.name())
    traverse_filename = root + '.traverse.dat'
    # => Traverse <= #
    occs = []
    energies = []
    potentials = []
    convs = []

    # => Run the neutral for its orbitals, if requested <= #

    core.set_local_option("SCF", "DF_INTS_IO", "SAVE")

    old_guess = core.get_local_option("SCF", "GUESS")
    if (neutral_guess):
        if (hf_guess):
            core.set_local_option("SCF", "REFERENCE", "UHF")
        driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs)
        core.set_local_option("SCF", "GUESS", "READ")
        core.set_local_option("SCF", "DF_INTS_IO", "LOAD")

    # => Run the anion first <= #

    molecule.set_molecular_charge(chargem)
    molecule.set_multiplicity(multm)

    # => Burn the anion in with hf, if requested <= #
    if hf_guess:
        core.set_local_option("SCF", "REFERENCE", "UHF")
        driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs)
        core.set_local_option("SCF", "REFERENCE", "UKS")
        core.set_local_option("SCF", "GUESS", "READ")
        core.set_local_option("SCF", "DF_INTS_IO", "SAVE")

    core.set_local_option("SCF", "FRAC_START", frac_start)
    core.set_local_option("SCF", "FRAC_RENORMALIZE", True)
    # NYI core.set_local_option("SCF", "FRAC_LOAD", False)

    for occ in LUMO_occs:

        core.set_local_option("SCF", "FRAC_OCC", [LUMO])
        core.set_local_option("SCF", "FRAC_VAL", [occ])

        E, wfn = driver.energy('scf',
                               dft_functional=name,
                               return_wfn=True,
                               molecule=molecule,
                               **kwargs)
        C = 1
        if E == 0.0:
            E = core.variable('SCF ITERATION ENERGY')
            C = 0

        if LUMO > 0:
            eps = wfn.epsilon_a()
            potentials.append(eps.get(int(LUMO) - 1))
        else:
            eps = wfn.epsilon_b()
            potentials.append(eps.get(-int(LUMO) - 1))

        occs.append(occ)
        energies.append(E)
        convs.append(C)

        core.set_local_option("SCF", "FRAC_START", 2)
        #core.set_local_option("SCF", "FRAC_LOAD", True)
        core.set_local_option("SCF", "GUESS", "READ")
        core.set_local_option("SCF", "FRAC_DIIS", frac_diis)
        core.set_local_option("SCF", "DF_INTS_IO", "LOAD")

    # => Run the neutral next <= #

    molecule.set_molecular_charge(charge0)
    molecule.set_multiplicity(mult0)

    # Burn the neutral in with hf, if requested <= #

    if not continuous_guess:
        core.set_local_option("SCF", "GUESS", old_guess)
        if hf_guess:
            core.set_local_option("SCF", "FRAC_START", 0)
            core.set_local_option("SCF", "REFERENCE", "UHF")
            driver.energy('scf',
                          dft_functional=name,
                          molecule=molecule,
                          **kwargs)
            core.set_local_option("SCF", "REFERENCE", "UKS")
            core.set_local_option("SCF", "GUESS", "READ")
        # NYI core.set_local_option("SCF", "FRAC_LOAD", False)

    core.set_local_option("SCF", "FRAC_START", frac_start)
    core.set_local_option("SCF", "FRAC_RENORMALIZE", True)

    for occ in HOMO_occs:

        core.set_local_option("SCF", "FRAC_OCC", [H**O])
        core.set_local_option("SCF", "FRAC_VAL", [occ])

        E, wfn = driver.energy('scf',
                               dft_functional=name,
                               return_wfn=True,
                               molecule=molecule,
                               **kwargs)
        C = 1
        if E == 0.0:
            E = core.variable('SCF ITERATION ENERGY')
            C = 0

        if LUMO > 0:
            eps = wfn.epsilon_a()
            potentials.append(eps.get(int(H**O) - 1))
        else:
            eps = wfn.epsilon_b()
            potentials.append(eps.get(-int(H**O) - 1))

        occs.append(occ - 1.0)
        energies.append(E)
        convs.append(C)

        core.set_local_option("SCF", "FRAC_START", 2)
        # NYI core.set_local_option("SCF", "FRAC_LOAD", True)
        core.set_local_option("SCF", "GUESS", "READ")
        core.set_local_option("SCF", "FRAC_DIIS", frac_diis)
        core.set_local_option("SCF", "DF_INTS_IO", "LOAD")

    # => Print the results out <= #
    E = {}
    core.print_out(
        """\n    ==> Fractional Occupation Traverse Results <==\n\n""")
    core.print_out("""    %-11s %-24s %-24s %11s\n""" %
                   ('N', 'Energy', 'H**O Energy', 'Converged'))
    for k in range(len(occs)):
        core.print_out("""    %11.3E %24.16E %24.16E %11d\n""" %
                       (occs[k], energies[k], potentials[k], convs[k]))
        E[occs[k]] = energies[k]

    core.print_out("""
    You trying to be a hero Watkins?
    Just trying to kill some bugs sir!
            -Starship Troopers""")

    # Drop the files out
    with open(traverse_filename, 'w') as fh:
        fh.write("""    %-11s %-24s %-24s %11s\n""" %
                 ('N', 'Energy', 'H**O Energy', 'Converged'))
        for k in range(len(occs)):
            fh.write("""    %11.3E %24.16E %24.16E %11d\n""" %
                     (occs[k], energies[k], potentials[k], convs[k]))

    optstash.restore()
    return E
コード例 #5
0
ファイル: mcscf_solver.py プロジェクト: bennybp/psi4
def mcscf_solver(ref_wfn):

    # Build CIWavefunction
    core.prepare_options_for_module("DETCI")
    ciwfn = core.CIWavefunction(ref_wfn)

    # Hush a lot of CI output
    ciwfn.set_print(0)

    # Begin with a normal two-step
    step_type = 'Initial CI'
    total_step = core.Matrix("Total step", ciwfn.get_dimension('OA'), ciwfn.get_dimension('AV'))
    start_orbs = ciwfn.get_orbitals("ROT").clone()
    ciwfn.set_orbitals("ROT", start_orbs)

    # Grab da options
    mcscf_orb_grad_conv = core.get_option("DETCI", "MCSCF_R_CONVERGENCE")
    mcscf_e_conv = core.get_option("DETCI", "MCSCF_E_CONVERGENCE")
    mcscf_max_macroiteration = core.get_option("DETCI", "MCSCF_MAXITER")
    mcscf_type = core.get_option("DETCI", "MCSCF_TYPE")
    mcscf_d_file = core.get_option("DETCI", "CI_FILE_START") + 3
    mcscf_nroots = core.get_option("DETCI", "NUM_ROOTS")
    mcscf_wavefunction_type = core.get_option("DETCI", "WFN")
    mcscf_ndet = ciwfn.ndet()
    mcscf_nuclear_energy = ciwfn.molecule().nuclear_repulsion_energy()
    mcscf_steplimit = core.get_option("DETCI", "MCSCF_MAX_ROT")
    mcscf_rotate = core.get_option("DETCI", "MCSCF_ROTATE")

    # DIIS info
    mcscf_diis_start = core.get_option("DETCI", "MCSCF_DIIS_START")
    mcscf_diis_freq = core.get_option("DETCI", "MCSCF_DIIS_FREQ")
    mcscf_diis_error_type = core.get_option("DETCI", "MCSCF_DIIS_ERROR_TYPE")
    mcscf_diis_max_vecs = core.get_option("DETCI", "MCSCF_DIIS_MAX_VECS")

    # One-step info
    mcscf_target_conv_type = core.get_option("DETCI", "MCSCF_ALGORITHM")
    mcscf_so_start_grad = core.get_option("DETCI", "MCSCF_SO_START_GRAD")
    mcscf_so_start_e = core.get_option("DETCI", "MCSCF_SO_START_E")
    mcscf_current_step_type = 'Initial CI'

    # Start with SCF energy and other params
    scf_energy = core.get_variable("HF TOTAL ENERGY")
    eold = scf_energy
    norb_iter = 1
    converged = False
    ah_step = False
    qc_step = False
    approx_integrals_only = True

    # Fake info to start with the inital diagonalization
    ediff = 1.e-4
    orb_grad_rms = 1.e-3

    # Grab needed objects
    diis_obj = solvers.DIIS(mcscf_diis_max_vecs)
    mcscf_obj = ciwfn.mcscf_object()

    # Execute the rotate command
    for rot in mcscf_rotate:
        if len(rot) != 4:
            raise p4util.PsiException("Each element of the MCSCF rotate command requires 4 arguements (irrep, orb1, orb2, theta).")

        irrep, orb1, orb2, theta = rot
        if irrep > ciwfn.Ca().nirrep():
            raise p4util.PsiException("MCSCF_ROTATE: Expression %s irrep number is larger than the number of irreps" %
                                    (str(rot)))

        if max(orb1, orb2) > ciwfn.Ca().coldim()[irrep]:
            raise p4util.PsiException("MCSCF_ROTATE: Expression %s orbital number exceeds number of orbitals in irrep" %
                                    (str(rot)))

        theta = np.deg2rad(theta)

        x = ciwfn.Ca().nph[irrep][:, orb1].copy()
        y = ciwfn.Ca().nph[irrep][:, orb2].copy()

        xp = np.cos(theta) * x - np.sin(theta) * y
        yp = np.sin(theta) * x + np.cos(theta) * y

        ciwfn.Ca().nph[irrep][:, orb1] = xp
        ciwfn.Ca().nph[irrep][:, orb2] = yp


    # Limited RAS functionality
    if core.get_local_option("DETCI", "WFN") == "RASSCF" and mcscf_target_conv_type != "TS":
        core.print_out("\n  Warning! Only the TS algorithm for RASSCF wavefunction is currently supported.\n")
        core.print_out("             Switching to the TS algorithm.\n\n")
        mcscf_target_conv_type = "TS"

    # Print out headers
    if mcscf_type == "CONV":
        mtype = "   @MCSCF"
        core.print_out("\n   ==> Starting MCSCF iterations <==\n\n")
        core.print_out("        Iter         Total Energy       Delta E   Orb RMS    CI RMS  NCI NORB\n")
    elif mcscf_type == "DF":
        mtype = "   @DF-MCSCF"
        core.print_out("\n   ==> Starting DF-MCSCF iterations <==\n\n")
        core.print_out("           Iter         Total Energy       Delta E   Orb RMS    CI RMS  NCI NORB\n")
    else:
        mtype = "   @AO-MCSCF"
        core.print_out("\n   ==> Starting AO-MCSCF iterations <==\n\n")
        core.print_out("           Iter         Total Energy       Delta E   Orb RMS    CI RMS  NCI NORB\n")

    # Iterate !
    for mcscf_iter in range(1, mcscf_max_macroiteration + 1):

        # Transform integrals, diagonalize H
        ciwfn.transform_mcscf_integrals(approx_integrals_only)
        nci_iter = ciwfn.diag_h(abs(ediff) * 1.e-2, orb_grad_rms * 1.e-3)

        # After the first diag we need to switch to READ
        ciwfn.set_ci_guess("DFILE")

        ciwfn.form_opdm()
        ciwfn.form_tpdm()
        ci_grad_rms = core.get_variable("DETCI AVG DVEC NORM")

        # Update MCSCF object
        Cocc = ciwfn.get_orbitals("DOCC")
        Cact = ciwfn.get_orbitals("ACT")
        Cvir = ciwfn.get_orbitals("VIR")
        opdm = ciwfn.get_opdm(-1, -1, "SUM", False)
        tpdm = ciwfn.get_tpdm("SUM", True)
        mcscf_obj.update(Cocc, Cact, Cvir, opdm, tpdm)

        current_energy = core.get_variable("MCSCF TOTAL ENERGY")

        orb_grad_rms = mcscf_obj.gradient_rms()
        ediff = current_energy - eold

        # Print iterations
        print_iteration(mtype, mcscf_iter, current_energy, ediff, orb_grad_rms, ci_grad_rms,
                        nci_iter, norb_iter, mcscf_current_step_type)
        eold = current_energy

        if mcscf_current_step_type == 'Initial CI':
            mcscf_current_step_type = 'TS'

        # Check convergence
        if (orb_grad_rms < mcscf_orb_grad_conv) and (abs(ediff) < abs(mcscf_e_conv)) and\
            (mcscf_iter > 3) and not qc_step:

            core.print_out("\n       %s has converged!\n\n" % mtype);
            converged = True
            break


        # Which orbital convergence are we doing?
        if ah_step:
            converged, norb_iter, step = ah_iteration(mcscf_obj, print_micro=False)
            norb_iter += 1

            if converged:
                mcscf_current_step_type = 'AH'
            else:
                core.print_out("      !Warning. Augmented Hessian did not converge. Taking an approx step.\n")
                step = mcscf_obj.approx_solve()
                mcscf_current_step_type = 'TS, AH failure'

        else:
            step = mcscf_obj.approx_solve()
            step_type = 'TS'

        maxstep = step.absmax()
        if maxstep > mcscf_steplimit:
            core.print_out('      Warning! Maxstep = %4.2f, scaling to %4.2f\n' % (maxstep, mcscf_steplimit))
            step.scale(mcscf_steplimit / maxstep)

        xstep = total_step.clone()
        total_step.add(step)

        # Do or add DIIS
        if (mcscf_iter >= mcscf_diis_start) and ("TS" in mcscf_current_step_type):

            # Figure out DIIS error vector
            if mcscf_diis_error_type == "GRAD":
                error = core.Matrix.triplet(ciwfn.get_orbitals("OA"),
                                            mcscf_obj.gradient(),
                                            ciwfn.get_orbitals("AV"),
                                            False, False, True)
            else:
                error = step

            diis_obj.add(total_step, error)

            if not (mcscf_iter % mcscf_diis_freq):
                total_step = diis_obj.extrapolate()
                mcscf_current_step_type = 'TS, DIIS'

        # Build the rotation by continuous updates
        if mcscf_iter == 1:
            totalU = mcscf_obj.form_rotation_matrix(total_step)
        else:
            xstep.axpy(-1.0, total_step)
            xstep.scale(-1.0)
            Ustep = mcscf_obj.form_rotation_matrix(xstep)
            totalU = core.Matrix.doublet(totalU, Ustep, False, False)

        # Build the rotation directly (not recommended)
        # orbs_mat = mcscf_obj.Ck(start_orbs, total_step)

        # Finally rotate and set orbitals
        orbs_mat = core.Matrix.doublet(start_orbs, totalU, False, False)
        ciwfn.set_orbitals("ROT", orbs_mat)

        # Figure out what the next step should be
        if (orb_grad_rms < mcscf_so_start_grad) and (abs(ediff) < abs(mcscf_so_start_e)) and\
                (mcscf_iter >= 2):

            if mcscf_target_conv_type == 'AH':
                approx_integrals_only = False
                ah_step = True
            elif mcscf_target_conv_type == 'OS':
                approx_integrals_only = False
                mcscf_current_step_type = 'OS, Prep'
                break
            else:
                continue
        #raise p4util.PsiException("")

    # If we converged do not do onestep
    if converged or (mcscf_target_conv_type != 'OS'):
        one_step_iters = []

    # If we are not converged load in Dvec and build iters array
    else:
        one_step_iters = range(mcscf_iter + 1, mcscf_max_macroiteration + 1)
        dvec = ciwfn.D_vector()
        dvec.init_io_files(True)
        dvec.read(0, 0)
        dvec.symnormalize(1.0, 0)

        ci_grad = ciwfn.new_civector(1, mcscf_d_file + 1, True, True)
        ci_grad.set_nvec(1)
        ci_grad.init_io_files(True)

    # Loop for onestep
    for mcscf_iter in one_step_iters:

        # Transform integrals and update the MCSCF object
        ciwfn.transform_mcscf_integrals(ciwfn.H(), False)
        ciwfn.form_opdm()
        ciwfn.form_tpdm()

        # Update MCSCF object
        Cocc = ciwfn.get_orbitals("DOCC")
        Cact = ciwfn.get_orbitals("ACT")
        Cvir = ciwfn.get_orbitals("VIR")
        opdm = ciwfn.get_opdm(-1, -1, "SUM", False)
        tpdm = ciwfn.get_tpdm("SUM", True)
        mcscf_obj.update(Cocc, Cact, Cvir, opdm, tpdm)

        orb_grad_rms = mcscf_obj.gradient_rms()

        # Warning! Does not work for SA-MCSCF
        current_energy = mcscf_obj.current_total_energy()
        current_energy += mcscf_nuclear_energy

        core.set_variable("CI ROOT %d TOTAL ENERGY" % 1, current_energy)
        core.set_variable("CURRENT ENERGY", current_energy)

        docc_energy = mcscf_obj.current_docc_energy()
        ci_energy = mcscf_obj.current_ci_energy()

        # Compute CI gradient
        ciwfn.sigma(dvec, ci_grad, 0, 0)
        ci_grad.scale(2.0, 0)
        ci_grad.axpy(-2.0 * ci_energy, dvec, 0, 0)

        ci_grad_rms = ci_grad.norm(0)
        orb_grad_rms = mcscf_obj.gradient().rms()

        ediff = current_energy - eold

        print_iteration(mtype, mcscf_iter, current_energy, ediff, orb_grad_rms, ci_grad_rms,
                        nci_iter, norb_iter, mcscf_current_step_type)
        mcscf_current_step_type = 'OS'

        eold = current_energy

        if (orb_grad_rms < mcscf_orb_grad_conv) and (abs(ediff) < abs(mcscf_e_conv)):

            core.print_out("\n       %s has converged!\n\n" % mtype);
            converged = True
            break

        # Take a step
        converged, norb_iter, nci_iter, step = qc_iteration(dvec, ci_grad, ciwfn, mcscf_obj)

        # Rotate integrals to new frame
        total_step.add(step)
        orbs_mat = mcscf_obj.Ck(ciwfn.get_orbitals("ROT"), step)
        ciwfn.set_orbitals("ROT", orbs_mat)


    core.print_out(mtype + " Final Energy: %20.15f\n" % current_energy)

    # Die if we did not converge
    if (not converged):
        if core.get_global_option("DIE_IF_NOT_CONVERGED"):
            raise p4util.PsiException("MCSCF: Iterations did not converge!")
        else:
            core.print_out("\nWarning! MCSCF iterations did not converge!\n\n")

    # Print out CI vector information
    if mcscf_target_conv_type == 'OS':
        dvec.close_io_files()
        ci_grad.close_io_files()

    # For orbital invariant methods we transform the orbitals to the natural or
    # semicanonical basis. Frozen doubly occupied and virtual orbitals are not
    # modified.
    if core.get_option("DETCI", "WFN") == "CASSCF":
        # Do we diagonalize the opdm?
        if core.get_option("DETCI", "NAT_ORBS"):
            ciwfn.ci_nat_orbs()
        else:
            ciwfn.semicanonical_orbs()

        # Retransform intragrals and update CI coeffs., OPDM, and TPDM
        ciwfn.transform_mcscf_integrals(approx_integrals_only)
        nci_iter = ciwfn.diag_h(abs(ediff) * 1.e-2, orb_grad_rms * 1.e-3)

        ciwfn.set_ci_guess("DFILE")

        ciwfn.form_opdm()
        ciwfn.form_tpdm()

    proc_util.print_ci_results(ciwfn, "MCSCF", scf_energy, current_energy, print_opdm_no=True)

    # Set final energy
    core.set_variable("CURRENT ENERGY", core.get_variable("MCSCF TOTAL ENERGY"))

    # What do we need to cleanup?
    if core.get_option("DETCI", "MCSCF_CI_CLEANUP"):
        ciwfn.cleanup_ci()
    if core.get_option("DETCI", "MCSCF_DPD_CLEANUP"):
        ciwfn.cleanup_dpd()

    del diis_obj
    del mcscf_obj
    return ciwfn
コード例 #6
0
def run_roa(name, **kwargs):
    """
        Main driver for managing Raman Optical activity computations with
        CC response theory.

        Uses distributed finite differences approach -->
            1. Sets up a database to keep track of running/finished/waiting
                computations.
            2. Generates separate input files for displaced geometries.
            3. When all displacements are run, collects the necessary information
                from each displaced computation, and computes final result.
    """

    # Get list of omega values -> Make sure we only have one wavelength
    # Catch this now before any real work gets done
    omega = core.get_option('CCRESPONSE', 'OMEGA')
    if len(omega) > 2:
        raise Exception('ROA scattering can only be performed for one wavelength.')
    else:
        pass

    core.print_out(
        'Running ROA computation. Subdirectories for each '
        'required displaced geometry have been created.\n\n')

    dbno = 0
    # Initialize database
    db = shelve.open('database', writeback=True)
    # Check if final result is in here
    # ->if we have already computed roa, back up the dict
    # ->copy it setting this flag to false and continue
    if ('roa_computed' in db) and ( db['roa_computed'] ):
        db2 = shelve.open('.database.bak{}'.format(dbno), writeback=True)
        dbno += 1
        for key,value in db.items():
            db2[key]=value

        db2.close()
        db['roa_computed'] = False
    else:
        db['roa_computed'] = False

    if 'inputs_generated' not in db:
        findif_response_utils.initialize_database(db,name,"roa", ["roa_tensor"])

    # Generate input files
    if not db['inputs_generated']:
        findif_response_utils.generate_inputs(db,name)
        # handled by helper db['inputs_generated'] = True

    # Check job status
    if db['inputs_generated'] and not db['jobs_complete']:
        print('Checking status')
        findif_response_utils.stat(db)
        for job, status in db['job_status'].items():
            print("{} --> {}".format(job, status))

    # Compute ROA Scattering
    if db['jobs_complete']:
        mygauge = core.get_option('CCRESPONSE', 'GAUGE')
        consider_gauge = {
            'LENGTH': ['Length Gauge'],
            'VELOCITY': ['Modified Velocity Gauge'],
            'BOTH': ['Length Gauge', 'Modified Velocity Gauge']
        }
        gauge_list = ["{} Results".format(x) for x in consider_gauge[mygauge]]
        # Gather data
        dip_polar_list = findif_response_utils.collect_displaced_matrix_data(
            db, 'Dipole Polarizability', 3)
        opt_rot_list = [
            x for x in (
                findif_response_utils.collect_displaced_matrix_data(
                    db,
                    "Optical Rotation Tensor ({})".format(gauge),
                    3
                )
                for gauge in consider_gauge[mygauge]
            )
        ]
        dip_quad_polar_list = findif_response_utils.collect_displaced_matrix_data(
            db, "Electric-Dipole/Quadrupole Polarizability", 9)
        # Compute Scattering
        # Run new function (src/bin/ccresponse/scatter.cc)
        core.print_out('Running scatter function')
        step = core.get_local_option('FINDIF', 'DISP_SIZE')
        for g_idx, gauge in enumerate(opt_rot_list):
            print('\n\n----------------------------------------------------------------------')
            print('\t%%%%%%%%%% {} %%%%%%%%%%'.format(gauge_list[g_idx]))
            print('----------------------------------------------------------------------\n\n')
            core.print_out('\n\n----------------------------------------------------------------------\n')
            core.print_out('\t%%%%%%%%%% {} %%%%%%%%%%\n'.format(gauge_list[g_idx]))
            core.print_out('----------------------------------------------------------------------\n\n')
            print('roa.py:85 I am not being passed a molecule, grabbing from global :(')
            core.scatter(core.get_active_molecule(), step, dip_polar_list, gauge, dip_quad_polar_list)

        db['roa_computed'] = True

    db.close()
コード例 #7
0
ファイル: scf_iterator.py プロジェクト: timostrunk/psi4
def scf_initialize(self):
    """Specialized initialization, compute integrals and does everything to prepare for iterations"""

    # Figure out memory distributions

    # Get memory in terms of doubles
    total_memory = (core.get_memory() /
                    8) * core.get_global_option("SCF_MEM_SAFETY_FACTOR")

    # Figure out how large the DFT collocation matrices are
    vbase = self.V_potential()
    if vbase:
        collocation_size = vbase.grid().collocation_size()
        if vbase.functional().ansatz() == 1:
            collocation_size *= 4  # First derivs
        elif vbase.functional().ansatz() == 2:
            collocation_size *= 10  # Second derivs
    else:
        collocation_size = 0

    # Change allocation for collocation matrices based on DFT type
    jk = _build_jk(self, total_memory)
    jk_size = jk.memory_estimate()

    # Give remaining to collocation
    if total_memory > jk_size:
        collocation_memory = total_memory - jk_size
    # Give up to 10% to collocation
    elif (total_memory * 0.1) > collocation_size:
        collocation_memory = collocation_size
    else:
        collocation_memory = total_memory * 0.1

    if collocation_memory > collocation_size:
        collocation_memory = collocation_size

    # Set constants
    self.iteration_ = 0
    self.memory_jk_ = int(total_memory - collocation_memory)
    self.memory_collocation_ = int(collocation_memory)

    if self.get_print():
        core.print_out("  ==> Integral Setup <==\n\n")

    # Initialize EFP
    efp_enabled = hasattr(self.molecule(), 'EFP')
    if efp_enabled:
        # EFP: Set QM system, options, and callback. Display efp geom in [A]
        efpobj = self.molecule().EFP
        core.print_out(efpobj.banner())
        core.print_out(
            efpobj.geometry_summary(units_to_bohr=constants.bohr2angstroms))

        efpptc, efpcoords, efpopts = get_qm_atoms_opts(self.molecule())
        efpobj.set_point_charges(efpptc, efpcoords)
        efpobj.set_opts(efpopts, label='psi', append='psi')

        efpobj.set_electron_density_field_fn(efp_field_fn)

    # Initialize all integrals and perform the first guess
    if self.attempt_number_ == 1:
        mints = core.MintsHelper(self.basisset())

        self.initialize_jk(self.memory_jk_, jk=jk)
        if self.V_potential():
            self.V_potential().build_collocation_cache(
                self.memory_collocation_)
        core.timer_on("HF: Form core H")
        self.form_H()
        core.timer_off("HF: Form core H")

        if efp_enabled:
            # EFP: Add in permanent moment contribution and cache
            core.timer_on("HF: Form Vefp")
            verbose = core.get_option('SCF', "PRINT")
            Vefp = modify_Fock_permanent(self.molecule(),
                                         mints,
                                         verbose=verbose - 1)
            Vefp = core.Matrix.from_array(Vefp)
            self.H().add(Vefp)
            Horig = self.H().clone()
            self.Horig = Horig
            core.print_out(
                "  QM/EFP: iterating Total Energy including QM/EFP Induction\n"
            )
            core.timer_off("HF: Form Vefp")

        core.timer_on("HF: Form S/X")
        self.form_Shalf()
        core.timer_off("HF: Form S/X")

        core.print_out("\n  ==> Pre-Iterations <==\n\n")

        core.timer_on("HF: Guess")
        self.guess()
        core.timer_off("HF: Guess")
        # Print out initial docc/socc/etc data
        if self.get_print():
            lack_occupancy = core.get_local_option('SCF', 'GUESS') in ['SAD']
            if core.get_global_option('GUESS') in ['SAD']:
                lack_occupancy = core.get_local_option('SCF',
                                                       'GUESS') in ['AUTO']
                self.print_preiterations(small=lack_occupancy)
            else:
                self.print_preiterations(small=lack_occupancy)

    else:
        # We're reading the orbitals from the previous set of iterations.
        self.form_D()
        self.set_energies("Total Energy", self.compute_initial_E())

    # turn off VV10 for iterations
    if core.get_option(
            'SCF', "DFT_VV10_POSTSCF") and self.functional().vv10_b() > 0.0:
        core.print_out("  VV10: post-SCF option active \n \n")
        self.functional().set_lock(False)
        self.functional().set_do_vv10(False)
        self.functional().set_lock(True)

    # Print iteration header
    is_dfjk = core.get_global_option('SCF_TYPE').endswith('DF')
    diis_rms = core.get_option('SCF', 'DIIS_RMS_ERROR')
    core.print_out("  ==> Iterations <==\n\n")
    core.print_out(
        "%s                        Total Energy        Delta E     %s |[F,P]|\n\n"
        % ("   " if is_dfjk else "", "RMS" if diis_rms else "MAX"))
コード例 #8
0
def mcscf_solver(ref_wfn):

    # Build CIWavefunction
    core.prepare_options_for_module("DETCI")
    ciwfn = core.CIWavefunction(ref_wfn)

    # Hush a lot of CI output
    ciwfn.set_print(0)

    # Begin with a normal two-step
    step_type = 'Initial CI'
    total_step = core.Matrix("Total step", ciwfn.get_dimension('OA'),
                             ciwfn.get_dimension('AV'))
    start_orbs = ciwfn.get_orbitals("ROT").clone()
    ciwfn.set_orbitals("ROT", start_orbs)

    # Grab da options
    mcscf_orb_grad_conv = core.get_option("DETCI", "MCSCF_R_CONVERGENCE")
    mcscf_e_conv = core.get_option("DETCI", "MCSCF_E_CONVERGENCE")
    mcscf_max_macroiteration = core.get_option("DETCI", "MCSCF_MAXITER")
    mcscf_type = core.get_option("DETCI", "MCSCF_TYPE")
    mcscf_d_file = core.get_option("DETCI", "CI_FILE_START") + 3
    mcscf_nroots = core.get_option("DETCI", "NUM_ROOTS")
    mcscf_wavefunction_type = core.get_option("DETCI", "WFN")
    mcscf_ndet = ciwfn.ndet()
    mcscf_nuclear_energy = ciwfn.molecule().nuclear_repulsion_energy()
    mcscf_steplimit = core.get_option("DETCI", "MCSCF_MAX_ROT")
    mcscf_rotate = core.get_option("DETCI", "MCSCF_ROTATE")

    # DIIS info
    mcscf_diis_start = core.get_option("DETCI", "MCSCF_DIIS_START")
    mcscf_diis_freq = core.get_option("DETCI", "MCSCF_DIIS_FREQ")
    mcscf_diis_error_type = core.get_option("DETCI", "MCSCF_DIIS_ERROR_TYPE")
    mcscf_diis_max_vecs = core.get_option("DETCI", "MCSCF_DIIS_MAX_VECS")

    # One-step info
    mcscf_target_conv_type = core.get_option("DETCI", "MCSCF_ALGORITHM")
    mcscf_so_start_grad = core.get_option("DETCI", "MCSCF_SO_START_GRAD")
    mcscf_so_start_e = core.get_option("DETCI", "MCSCF_SO_START_E")
    mcscf_current_step_type = 'Initial CI'

    # Start with SCF energy and other params
    scf_energy = ciwfn.variable("HF TOTAL ENERGY")
    eold = scf_energy
    norb_iter = 1
    converged = False
    ah_step = False
    qc_step = False
    approx_integrals_only = True

    # Fake info to start with the initial diagonalization
    ediff = 1.e-4
    orb_grad_rms = 1.e-3

    # Grab needed objects
    diis_obj = solvers.DIIS(mcscf_diis_max_vecs)
    mcscf_obj = ciwfn.mcscf_object()

    # Execute the rotate command
    for rot in mcscf_rotate:
        if len(rot) != 4:
            raise p4util.PsiException(
                "Each element of the MCSCF rotate command requires 4 arguements (irrep, orb1, orb2, theta)."
            )

        irrep, orb1, orb2, theta = rot
        if irrep > ciwfn.Ca().nirrep():
            raise p4util.PsiException(
                "MCSCF_ROTATE: Expression %s irrep number is larger than the number of irreps"
                % (str(rot)))

        if max(orb1, orb2) > ciwfn.Ca().coldim()[irrep]:
            raise p4util.PsiException(
                "MCSCF_ROTATE: Expression %s orbital number exceeds number of orbitals in irrep"
                % (str(rot)))

        theta = np.deg2rad(theta)

        x = ciwfn.Ca().nph[irrep][:, orb1].copy()
        y = ciwfn.Ca().nph[irrep][:, orb2].copy()

        xp = np.cos(theta) * x - np.sin(theta) * y
        yp = np.sin(theta) * x + np.cos(theta) * y

        ciwfn.Ca().nph[irrep][:, orb1] = xp
        ciwfn.Ca().nph[irrep][:, orb2] = yp

    # Limited RAS functionality
    if core.get_local_option(
            "DETCI", "WFN") == "RASSCF" and mcscf_target_conv_type != "TS":
        core.print_out(
            "\n  Warning! Only the TS algorithm for RASSCF wavefunction is currently supported.\n"
        )
        core.print_out("             Switching to the TS algorithm.\n\n")
        mcscf_target_conv_type = "TS"

    # Print out headers
    if mcscf_type == "CONV":
        mtype = "   @MCSCF"
        core.print_out("\n   ==> Starting MCSCF iterations <==\n\n")
        core.print_out(
            "        Iter         Total Energy       Delta E   Orb RMS    CI RMS  NCI NORB\n"
        )
    elif mcscf_type == "DF":
        mtype = "   @DF-MCSCF"
        core.print_out("\n   ==> Starting DF-MCSCF iterations <==\n\n")
        core.print_out(
            "           Iter         Total Energy       Delta E   Orb RMS    CI RMS  NCI NORB\n"
        )
    else:
        mtype = "   @AO-MCSCF"
        core.print_out("\n   ==> Starting AO-MCSCF iterations <==\n\n")
        core.print_out(
            "           Iter         Total Energy       Delta E   Orb RMS    CI RMS  NCI NORB\n"
        )

    # Iterate !
    for mcscf_iter in range(1, mcscf_max_macroiteration + 1):

        # Transform integrals, diagonalize H
        ciwfn.transform_mcscf_integrals(approx_integrals_only)
        nci_iter = ciwfn.diag_h(abs(ediff) * 1.e-2, orb_grad_rms * 1.e-3)

        # After the first diag we need to switch to READ
        ciwfn.set_ci_guess("DFILE")

        ciwfn.form_opdm()
        ciwfn.form_tpdm()
        ci_grad_rms = core.variable("DETCI AVG DVEC NORM")

        # Update MCSCF object
        Cocc = ciwfn.get_orbitals("DOCC")
        Cact = ciwfn.get_orbitals("ACT")
        Cvir = ciwfn.get_orbitals("VIR")
        opdm = ciwfn.get_opdm(-1, -1, "SUM", False)
        tpdm = ciwfn.get_tpdm("SUM", True)
        mcscf_obj.update(Cocc, Cact, Cvir, opdm, tpdm)

        current_energy = core.variable("MCSCF TOTAL ENERGY")

        orb_grad_rms = mcscf_obj.gradient_rms()
        ediff = current_energy - eold

        # Print iterations
        print_iteration(mtype, mcscf_iter, current_energy, ediff, orb_grad_rms,
                        ci_grad_rms, nci_iter, norb_iter,
                        mcscf_current_step_type)
        eold = current_energy

        if mcscf_current_step_type == 'Initial CI':
            mcscf_current_step_type = 'TS'

        # Check convergence
        if (orb_grad_rms < mcscf_orb_grad_conv) and (abs(ediff) < abs(mcscf_e_conv)) and\
            (mcscf_iter > 3) and not qc_step:

            core.print_out("\n       %s has converged!\n\n" % mtype)
            converged = True
            break

        # Which orbital convergence are we doing?
        if ah_step:
            converged, norb_iter, step = ah_iteration(mcscf_obj,
                                                      print_micro=False)
            norb_iter += 1

            if converged:
                mcscf_current_step_type = 'AH'
            else:
                core.print_out(
                    "      !Warning. Augmented Hessian did not converge. Taking an approx step.\n"
                )
                step = mcscf_obj.approx_solve()
                mcscf_current_step_type = 'TS, AH failure'

        else:
            step = mcscf_obj.approx_solve()
            step_type = 'TS'

        maxstep = step.absmax()
        if maxstep > mcscf_steplimit:
            core.print_out(
                '      Warning! Maxstep = %4.2f, scaling to %4.2f\n' %
                (maxstep, mcscf_steplimit))
            step.scale(mcscf_steplimit / maxstep)

        xstep = total_step.clone()
        total_step.add(step)

        # Do or add DIIS
        if (mcscf_iter >= mcscf_diis_start) and ("TS"
                                                 in mcscf_current_step_type):

            # Figure out DIIS error vector
            if mcscf_diis_error_type == "GRAD":
                error = core.Matrix.triplet(ciwfn.get_orbitals("OA"),
                                            mcscf_obj.gradient(),
                                            ciwfn.get_orbitals("AV"), False,
                                            False, True)
            else:
                error = step

            diis_obj.add(total_step, error)

            if not (mcscf_iter % mcscf_diis_freq):
                total_step = diis_obj.extrapolate()
                mcscf_current_step_type = 'TS, DIIS'

        # Build the rotation by continuous updates
        if mcscf_iter == 1:
            totalU = mcscf_obj.form_rotation_matrix(total_step)
        else:
            xstep.axpy(-1.0, total_step)
            xstep.scale(-1.0)
            Ustep = mcscf_obj.form_rotation_matrix(xstep)
            totalU = core.Matrix.doublet(totalU, Ustep, False, False)

        # Build the rotation directly (not recommended)
        # orbs_mat = mcscf_obj.Ck(start_orbs, total_step)

        # Finally rotate and set orbitals
        orbs_mat = core.Matrix.doublet(start_orbs, totalU, False, False)
        ciwfn.set_orbitals("ROT", orbs_mat)

        # Figure out what the next step should be
        if (orb_grad_rms < mcscf_so_start_grad) and (abs(ediff) < abs(mcscf_so_start_e)) and\
                (mcscf_iter >= 2):

            if mcscf_target_conv_type == 'AH':
                approx_integrals_only = False
                ah_step = True
            elif mcscf_target_conv_type == 'OS':
                approx_integrals_only = False
                mcscf_current_step_type = 'OS, Prep'
                break
            else:
                continue
        #raise p4util.PsiException("")

    # If we converged do not do onestep
    if converged or (mcscf_target_conv_type != 'OS'):
        one_step_iters = []

    # If we are not converged load in Dvec and build iters array
    else:
        one_step_iters = range(mcscf_iter + 1, mcscf_max_macroiteration + 1)
        dvec = ciwfn.D_vector()
        dvec.init_io_files(True)
        dvec.read(0, 0)
        dvec.symnormalize(1.0, 0)

        ci_grad = ciwfn.new_civector(1, mcscf_d_file + 1, True, True)
        ci_grad.set_nvec(1)
        ci_grad.init_io_files(True)

    # Loop for onestep
    for mcscf_iter in one_step_iters:

        # Transform integrals and update the MCSCF object
        ciwfn.transform_mcscf_integrals(ciwfn.H(), False)
        ciwfn.form_opdm()
        ciwfn.form_tpdm()

        # Update MCSCF object
        Cocc = ciwfn.get_orbitals("DOCC")
        Cact = ciwfn.get_orbitals("ACT")
        Cvir = ciwfn.get_orbitals("VIR")
        opdm = ciwfn.get_opdm(-1, -1, "SUM", False)
        tpdm = ciwfn.get_tpdm("SUM", True)
        mcscf_obj.update(Cocc, Cact, Cvir, opdm, tpdm)

        orb_grad_rms = mcscf_obj.gradient_rms()

        # Warning! Does not work for SA-MCSCF
        current_energy = mcscf_obj.current_total_energy()
        current_energy += mcscf_nuclear_energy

        core.set_variable("CI ROOT %d TOTAL ENERGY" % 1, current_energy)
        core.set_variable("CURRENT ENERGY", current_energy)

        docc_energy = mcscf_obj.current_docc_energy()
        ci_energy = mcscf_obj.current_ci_energy()

        # Compute CI gradient
        ciwfn.sigma(dvec, ci_grad, 0, 0)
        ci_grad.scale(2.0, 0)
        ci_grad.axpy(-2.0 * ci_energy, dvec, 0, 0)

        ci_grad_rms = ci_grad.norm(0)
        orb_grad_rms = mcscf_obj.gradient().rms()

        ediff = current_energy - eold

        print_iteration(mtype, mcscf_iter, current_energy, ediff, orb_grad_rms,
                        ci_grad_rms, nci_iter, norb_iter,
                        mcscf_current_step_type)
        mcscf_current_step_type = 'OS'

        eold = current_energy

        if (orb_grad_rms < mcscf_orb_grad_conv) and (abs(ediff) <
                                                     abs(mcscf_e_conv)):

            core.print_out("\n       %s has converged!\n\n" % mtype)
            converged = True
            break

        # Take a step
        converged, norb_iter, nci_iter, step = qc_iteration(
            dvec, ci_grad, ciwfn, mcscf_obj)

        # Rotate integrals to new frame
        total_step.add(step)
        orbs_mat = mcscf_obj.Ck(ciwfn.get_orbitals("ROT"), step)
        ciwfn.set_orbitals("ROT", orbs_mat)

    core.print_out(mtype + " Final Energy: %20.15f\n" % current_energy)

    # Die if we did not converge
    if (not converged):
        if core.get_global_option("DIE_IF_NOT_CONVERGED"):
            raise p4util.PsiException("MCSCF: Iterations did not converge!")
        else:
            core.print_out("\nWarning! MCSCF iterations did not converge!\n\n")

    # Print out CI vector information
    if mcscf_target_conv_type == 'OS':
        dvec.close_io_files()
        ci_grad.close_io_files()

    # For orbital invariant methods we transform the orbitals to the natural or
    # semicanonical basis. Frozen doubly occupied and virtual orbitals are not
    # modified.
    if core.get_option("DETCI", "WFN") == "CASSCF":
        # Do we diagonalize the opdm?
        if core.get_option("DETCI", "NAT_ORBS"):
            ciwfn.ci_nat_orbs()
        else:
            ciwfn.semicanonical_orbs()

        # Retransform intragrals and update CI coeffs., OPDM, and TPDM
        ciwfn.transform_mcscf_integrals(approx_integrals_only)
        nci_iter = ciwfn.diag_h(abs(ediff) * 1.e-2, orb_grad_rms * 1.e-3)

        ciwfn.set_ci_guess("DFILE")

        ciwfn.form_opdm()
        ciwfn.form_tpdm()

    proc_util.print_ci_results(ciwfn,
                               "MCSCF",
                               scf_energy,
                               current_energy,
                               print_opdm_no=True)

    # Set final energy
    core.set_variable("CURRENT ENERGY", core.variable("MCSCF TOTAL ENERGY"))

    # What do we need to cleanup?
    if core.get_option("DETCI", "MCSCF_CI_CLEANUP"):
        ciwfn.cleanup_ci()
    if core.get_option("DETCI", "MCSCF_DPD_CLEANUP"):
        ciwfn.cleanup_dpd()

    del diis_obj
    del mcscf_obj
    return ciwfn
コード例 #9
0
ファイル: procutil.py プロジェクト: lcyyork/psi4
def prepare_options_for_modules(
    changedOnly: bool = False,
    commandsInsteadDict: bool = False,
    globalsOnly: bool = False,
    stateInsteadMediated: bool = False,
) -> Union[Dict, str]:
    """Capture current state of C++ psi4.core.Options information.

    Parameters
    ----------
    changedOnly
        Record info only for options that have been set (may still be default).
        When False, records values for every option.
    commandsInsteadDict
        Return string of commands to exec to reset options in current form.
        When False, return nested dictionary with globals in 'GLOBALS' subdictionary
        and locals in subdictionaries by module.
    globalsOnly
        Record only global options to save time querying the psi4.core.Options object.
        When False, record module-level options, too.
    stateInsteadMediated
        When ``True``, querying this function for options to be later *reset* into the same
        state -- the raw values and has_changed status at the global and local levels.
        When ``False``, querying this function for mediated options to be *used* -- the results
        of the globals/locals handshake as computed by the Options object itself. Here,
        ``dict[module][option][value]`` is the value to be used by module.

    Returns
    -------
    dict
        When ``commandsInsteadDict=False``.
    str
        When ``commandsInsteadDict=True``.

    .. caution:: Some features are not yet implemented. Buy a developer a coffee.

       - command return doesn't revoke has_changed setting for unchanged with changedOnly=False

       - not all kwargs are independent

    """
    has_changed_snapshot = {module: core.options_to_python(module) for module in _modules}
    options = collections.defaultdict(dict)
    commands = ''
    for opt in core.get_global_option_list():
        hoc = core.has_global_option_changed(opt)
        if hoc or not changedOnly:
            if opt in ['DFT_CUSTOM_FUNCTIONAL', 'EXTERN']:  # Feb 2017 hack
                continue
            val = core.get_global_option(opt)
            options['GLOBALS'][opt] = {'value': val, 'has_changed': hoc}
            if isinstance(val, str):
                commands += """core.set_global_option('%s', '%s')\n""" % (opt, val)
            else:
                commands += """core.set_global_option('%s', %s)\n""" % (opt, val)
        if globalsOnly:
            continue

        opt_snapshot = {k: v[opt] for k, v in has_changed_snapshot.items() if opt in v}
        for module, (lhoc, ohoc) in opt_snapshot.items():
            if stateInsteadMediated:
                hoc = lhoc
            else:
                hoc = ohoc
            if hoc or not changedOnly:
                if stateInsteadMediated:
                    val = core.get_local_option(module, opt)
                else:
                    val = core.get_option(module, opt)
                options[module][opt] = {'value': val, 'has_changed': hoc}
                if isinstance(val, str):
                    commands += """core.set_local_option('%s', '%s', '%s')\n""" % (module, opt, val)
                else:
                    commands += """core.set_local_option('%s', '%s', %s)\n""" % (module, opt, val)

    if commandsInsteadDict:
        return commands
    else:
        return options
コード例 #10
0
ファイル: roa.py プロジェクト: bennybp/psi4
def run_roa(name, **kwargs):
    """
        Main driver for managing Raman Optical activity computations with
        CC response theory.

        Uses distributed finite differences approach -->
            1. Sets up a database to keep track of running/finished/waiting
                computations.
            2. Generates separate input files for displaced geometries.
            3. When all displacements are run, collects the necessary information
                from each displaced computation, and computes final result.
    """

    # Get list of omega values -> Make sure we only have one wavelength
    # Catch this now before any real work gets done
    omega = core.get_option('CCRESPONSE', 'OMEGA')
    if len(omega) > 2:
        raise Exception('ROA scattering can only be performed for one wavelength.')
    else:
        pass

    core.print_out(
        'Running ROA computation. Subdirectories for each '
        'required displaced geometry have been created.\n\n')

    dbno = 0
    # Initialize database
    db = shelve.open('database', writeback=True)
    # Check if final result is in here
    # ->if we have already computed roa, back up the dict
    # ->copy it setting this flag to false and continue
    if ('roa_computed' in db) and ( db['roa_computed'] ):
        db2 = shelve.open('.database.bak{}'.format(dbno), writeback=True)
        dbno += 1
        for key,value in db.items():
            db2[key]=value

        db2.close()
        db['roa_computed'] = False
    else:
        db['roa_computed'] = False

    if 'inputs_generated' not in db:
        findif_response_utils.initialize_database(db,name,"roa", ["roa_tensor"])

    # Generate input files
    if not db['inputs_generated']:
        findif_response_utils.generate_inputs(db,name)
        # handled by helper db['inputs_generated'] = True

    # Check job status
    if db['inputs_generated'] and not db['jobs_complete']:
        print('Checking status')
        findif_response_utils.stat(db)
        for job, status in db['job_status'].items():
            print("{} --> {}".format(job, status))

    # Compute ROA Scattering
    if db['jobs_complete']:
        mygauge = core.get_option('CCRESPONSE', 'GAUGE')
        consider_gauge = {
            'LENGTH': ['Length Gauge'],
            'VELOCITY': ['Modified Velocity Gauge'],
            'BOTH': ['Length Gauge', 'Modified Velocity Gauge']
        }
        gauge_list = ["{} Results".format(x) for x in consider_gauge[mygauge]]
        # Gather data
        dip_polar_list = findif_response_utils.collect_displaced_matrix_data(
            db, 'Dipole Polarizability', 3)
        opt_rot_list = [
            x for x in (
                findif_response_utils.collect_displaced_matrix_data(
                    db,
                    "Optical Rotation Tensor ({})".format(gauge),
                    3
                )
                for gauge in consider_gauge[mygauge]
            )
        ]
        dip_quad_polar_list = findif_response_utils.collect_displaced_matrix_data(
            db, "Electric-Dipole/Quadrupole Polarizability", 9)
        # Compute Scattering
        # Run new function (src/bin/ccresponse/scatter.cc)
        core.print_out('Running scatter function')
        step = core.get_local_option('FINDIF', 'DISP_SIZE')
        for g_idx, gauge in enumerate(opt_rot_list):
            print('\n\n----------------------------------------------------------------------')
            print('\t%%%%%%%%%% {} %%%%%%%%%%'.format(gauge_list[g_idx]))
            print('----------------------------------------------------------------------\n\n')
            core.print_out('\n\n----------------------------------------------------------------------\n')
            core.print_out('\t%%%%%%%%%% {} %%%%%%%%%%\n'.format(gauge_list[g_idx]))
            core.print_out('----------------------------------------------------------------------\n\n')
            print('roa.py:85 I am not being passed a molecule, grabbing from global :(')
            core.scatter(core.get_active_molecule(), step, dip_polar_list, gauge, dip_quad_polar_list)

        db['roa_computed'] = True

    db.close()
コード例 #11
0
ファイル: frac.py プロジェクト: dsirianni/psi4
def frac_traverse(name, **kwargs):
    """Scan electron occupancy from +1 electron to -1.

    Parameters
    ----------
    name : string or function
        DFT functional string name or function defining functional
        whose omega is to be optimized.
    molecule : :ref:`molecule <op_py_molecule>`, optional
        Target molecule (neutral) for which omega is to be tuned, if not last defined.
    cation_mult : int, optional
        Multiplicity of cation, if not neutral multiplicity + 1.
    anion_mult : int, optional
        Multiplicity of anion, if not neutral multiplicity + 1.
    frac_start : int, optional
        Iteration at which to start frac procedure when not reading previous
        guess. Defaults to 25.
    HOMO_occs : list, optional
        Occupations to step through for cation, by default `[1 - 0.1 * x for x in range(11)]`.
    LUMO_occs : list, optional
        Occupations to step through for anion, by default `[1 - 0.1 * x for x in range(11)]`.
    H**O : int, optional
        Index of H**O.
    LUMO : int, optional
        Index of LUMO.
    frac_diis : bool, optional
        Do use DIIS for non-1.0-occupied points?
    neutral_guess : bool, optional
        Do use neutral orbitals as guess for the anion?
    hf_guess: bool, optional
        Do use UHF guess before UKS?
    continuous_guess : bool, optional
        Do carry along guess rather than reguessing at each occupation?
    filename : str, optional
        Result filename, if not name of molecule.

    Returns
    -------
    dict
        Dictionary associating SCF energies with occupations.

    """
    optstash = p4util.OptionsState(
        ['SCF', 'GUESS'],
        ['SCF', 'DF_INTS_IO'],
        ['SCF', 'REFERENCE'],
        ["SCF", "FRAC_START"],
        ["SCF", "FRAC_RENORMALIZE"],
        #["SCF", "FRAC_LOAD"],
        ["SCF", "FRAC_OCC"],
        ["SCF", "FRAC_VAL"],
        ["SCF", "FRAC_DIIS"])
    kwargs = p4util.kwargs_lower(kwargs)

    # Make sure the molecule the user provided is the active one, and neutral
    molecule = kwargs.pop('molecule', core.get_active_molecule())
    molecule.update_geometry()

    if molecule.molecular_charge() != 0:
        raise ValidationError("""frac_traverse requires neutral molecule to start.""")
    if molecule.schoenflies_symbol() != 'c1':
        core.print_out("""  Requested procedure `frac_traverse` does not make use of molecular symmetry: """
                       """further calculations in C1 point group.\n""")
    molecule = molecule.clone()
    molecule.reset_point_group('c1')
    molecule.update_geometry()

    charge0 = molecule.molecular_charge()
    mult0 = molecule.multiplicity()

    chargep = charge0 + 1
    chargem = charge0 - 1

    multp = kwargs.get('cation_mult', mult0 + 1)
    multm = kwargs.get('anion_mult', mult0 + 1)

    # By default, we start the frac procedure on the 25th iteration
    # when not reading a previous guess
    frac_start = kwargs.get('frac_start', 25)

    # By default, we occupy by tenths of electrons
    HOMO_occs = kwargs.get('HOMO_occs', [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0])
    LUMO_occs = kwargs.get('LUMO_occs', [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0])

    # By default, H**O and LUMO are both in alpha
    Z = 0
    for A in range(molecule.natom()):
        Z += molecule.Z(A)
    Z -= charge0
    H**O = kwargs.get('H**O', (Z / 2 + 1 if (Z % 2) else Z / 2))
    LUMO = kwargs.get('LUMO', H**O + 1)

    # By default, DIIS in FRAC (1.0 occupation is always DIIS'd)
    frac_diis = kwargs.get('frac_diis', True)

    # By default, use the neutral orbitals as a guess for the anion
    neutral_guess = kwargs.get('neutral_guess', True)

    # By default, burn-in with UHF first, if UKS
    hf_guess = False
    if core.get_local_option('SCF', 'REFERENCE') == 'UKS':
        hf_guess = kwargs.get('hf_guess', True)

    # By default, re-guess at each N
    continuous_guess = kwargs.get('continuous_guess', False)

    # By default, drop the files to the molecule's name
    root = kwargs.get('filename', molecule.name())
    traverse_filename = root + '.traverse.dat'
    # => Traverse <= #
    occs = []
    energies = []
    potentials = []
    convs = []

    # => Run the neutral for its orbitals, if requested <= #

    core.set_local_option("SCF", "DF_INTS_IO", "SAVE")

    old_guess = core.get_local_option("SCF", "GUESS")
    if (neutral_guess):
        if (hf_guess):
            core.set_local_option("SCF", "REFERENCE", "UHF")
        driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs)
        core.set_local_option("SCF", "GUESS", "READ")
        core.set_local_option("SCF", "DF_INTS_IO", "LOAD")

    # => Run the anion first <= #

    molecule.set_molecular_charge(chargem)
    molecule.set_multiplicity(multm)

    # => Burn the anion in with hf, if requested <= #
    if hf_guess:
        core.set_local_option("SCF", "REFERENCE","UHF")
        driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs)
        core.set_local_option("SCF", "REFERENCE", "UKS")
        core.set_local_option("SCF", "GUESS", "READ")
        core.set_local_option("SCF", "DF_INTS_IO", "SAVE")

    core.set_local_option("SCF", "FRAC_START", frac_start)
    core.set_local_option("SCF", "FRAC_RENORMALIZE", True)
    # NYI core.set_local_option("SCF", "FRAC_LOAD", False)

    for occ in LUMO_occs:

        core.set_local_option("SCF", "FRAC_OCC", [LUMO])
        core.set_local_option("SCF", "FRAC_VAL", [occ])

        E, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, **kwargs)
        C = 1
        if E == 0.0:
            E = core.variable('SCF ITERATION ENERGY')
            C = 0

        if LUMO > 0:
            eps = wfn.epsilon_a()
            potentials.append(eps.get(int(LUMO) - 1))
        else:
            eps = wfn.epsilon_b()
            potentials.append(eps.get(-int(LUMO) - 1))

        occs.append(occ)
        energies.append(E)
        convs.append(C)

        core.set_local_option("SCF", "FRAC_START", 2)
        #core.set_local_option("SCF", "FRAC_LOAD", True)
        core.set_local_option("SCF", "GUESS", "READ")
        core.set_local_option("SCF", "FRAC_DIIS", frac_diis)
        core.set_local_option("SCF", "DF_INTS_IO", "LOAD")


    # => Run the neutral next <= #

    molecule.set_molecular_charge(charge0)
    molecule.set_multiplicity(mult0)

    # Burn the neutral in with hf, if requested <= #

    if not continuous_guess:
        core.set_local_option("SCF", "GUESS", old_guess)
        if hf_guess:
            core.set_local_option("SCF", "FRAC_START", 0)
            core.set_local_option("SCF", "REFERENCE", "UHF")
            driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs)
            core.set_local_option("SCF", "REFERENCE", "UKS")
            core.set_local_option("SCF", "GUESS", "READ")
        # NYI core.set_local_option("SCF", "FRAC_LOAD", False)

    core.set_local_option("SCF", "FRAC_START", frac_start)
    core.set_local_option("SCF", "FRAC_RENORMALIZE", True)

    for occ in HOMO_occs:

        core.set_local_option("SCF", "FRAC_OCC", [H**O])
        core.set_local_option("SCF", "FRAC_VAL", [occ])

        E, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, **kwargs)
        C = 1
        if E == 0.0:
            E = core.variable('SCF ITERATION ENERGY')
            C = 0

        if LUMO > 0:
            eps = wfn.epsilon_a()
            potentials.append(eps.get(int(H**O) - 1))
        else:
            eps = wfn.epsilon_b()
            potentials.append(eps.get(-int(H**O) - 1))

        occs.append(occ - 1.0)
        energies.append(E)
        convs.append(C)

        core.set_local_option("SCF", "FRAC_START", 2)
        # NYI core.set_local_option("SCF", "FRAC_LOAD", True)
        core.set_local_option("SCF", "GUESS", "READ")
        core.set_local_option("SCF", "FRAC_DIIS", frac_diis)
        core.set_local_option("SCF", "DF_INTS_IO", "LOAD")

    # => Print the results out <= #
    E = {}
    core.print_out("""\n    ==> Fractional Occupation Traverse Results <==\n\n""")
    core.print_out("""    %-11s %-24s %-24s %11s\n""" % ('N', 'Energy', 'H**O Energy', 'Converged'))
    for k in range(len(occs)):
        core.print_out("""    %11.3E %24.16E %24.16E %11d\n""" % (occs[k], energies[k], potentials[k], convs[k]))
        E[occs[k]] = energies[k]

    core.print_out("""
    You trying to be a hero Watkins?
    Just trying to kill some bugs sir!
            -Starship Troopers""")

    # Drop the files out
    with open(traverse_filename, 'w') as fh:
        fh.write("""    %-11s %-24s %-24s %11s\n""" % ('N', 'Energy', 'H**O Energy', 'Converged'))
        for k in range(len(occs)):
            fh.write("""    %11.3E %24.16E %24.16E %11d\n""" % (occs[k], energies[k], potentials[k], convs[k]))

    optstash.restore()
    return E