def prepare_options_for_set_options(): """Capture current state of C++ psi4.core.Options information for reloading by `psi4.set_options()`. Returns ------- dict Dictionary where keys are option names to be set globally or module__option mangled names to be set locally. Values are option values. """ flat_options = {} has_changed_snapshot = {module: core.options_to_python(module) for module in _modules} for opt in core.get_global_option_list(): handled_locally = False ghoc = core.has_global_option_changed(opt) opt_snapshot = {k: v[opt] for k, v in has_changed_snapshot.items() if opt in v} for module, (lhoc, ohoc) in opt_snapshot.items(): if ohoc: if lhoc: key = module + '__' + opt val = core.get_local_option(module, opt) else: key = opt val = core.get_global_option(opt) handled_locally = True flat_options[key] = val if ghoc and not handled_locally: # some options are globals section (not level) so not in any module flat_options[opt] = core.get_global_option(opt) return flat_options
def __init__(self, option: str, module: Optional[str] = None): self.option = option.upper() if module: self.module = module.upper() else: self.module = None self.value_global = core.get_global_option(option) self.haschanged_global = core.has_global_option_changed(option) if self.module: self.value_local = core.get_local_option(self.module, option) self.haschanged_local = core.has_local_option_changed(self.module, option) self.value_used = core.get_option(self.module, option) self.haschanged_used = core.has_option_changed(self.module, option) else: self.value_local = None self.haschanged_local = None self.value_used = None self.haschanged_used = None
def __init__(self, option, module=None): self.option = option.upper() if module: self.module = module.upper() else: self.module = None self.value_global = core.get_global_option(option) self.haschanged_global = core.has_global_option_changed(option) if self.module: self.value_local = core.get_local_option(self.module, option) self.haschanged_local = core.has_local_option_changed(self.module, option) self.value_used = core.get_option(self.module, option) self.haschanged_used = core.has_option_changed(self.module, option) else: self.value_local = None self.haschanged_local = None self.value_used = None self.haschanged_used = None
def frac_traverse(name, **kwargs): """Scan electron occupancy from +1 electron to -1. Parameters ---------- name : string or function DFT functional string name or function defining functional whose omega is to be optimized. molecule : :ref:`molecule <op_py_molecule>`, optional Target molecule (neutral) for which omega is to be tuned, if not last defined. cation_mult : int, optional Multiplicity of cation, if not neutral multiplicity + 1. anion_mult : int, optional Multiplicity of anion, if not neutral multiplicity + 1. frac_start : int, optional Iteration at which to start frac procedure when not reading previous guess. Defaults to 25. HOMO_occs : list, optional Occupations to step through for cation, by default `[1 - 0.1 * x for x in range(11)]`. LUMO_occs : list, optional Occupations to step through for anion, by default `[1 - 0.1 * x for x in range(11)]`. H**O : int, optional Index of H**O. LUMO : int, optional Index of LUMO. frac_diis : bool, optional Do use DIIS for non-1.0-occupied points? neutral_guess : bool, optional Do use neutral orbitals as guess for the anion? hf_guess: bool, optional Do use UHF guess before UKS? continuous_guess : bool, optional Do carry along guess rather than reguessing at each occupation? filename : str, optional Result filename, if not name of molecule. Returns ------- dict Dictionary associating SCF energies with occupations. """ optstash = p4util.OptionsState( ['SCF', 'GUESS'], ['SCF', 'DF_INTS_IO'], ['SCF', 'REFERENCE'], ["SCF", "FRAC_START"], ["SCF", "FRAC_RENORMALIZE"], #["SCF", "FRAC_LOAD"], ["SCF", "FRAC_OCC"], ["SCF", "FRAC_VAL"], ["SCF", "FRAC_DIIS"]) kwargs = p4util.kwargs_lower(kwargs) # Make sure the molecule the user provided is the active one, and neutral molecule = kwargs.pop('molecule', core.get_active_molecule()) molecule.update_geometry() if molecule.molecular_charge() != 0: raise ValidationError( """frac_traverse requires neutral molecule to start.""") if molecule.schoenflies_symbol() != 'c1': core.print_out( """ Requested procedure `frac_traverse` does not make use of molecular symmetry: """ """further calculations in C1 point group.\n""") molecule = molecule.clone() molecule.reset_point_group('c1') molecule.update_geometry() charge0 = molecule.molecular_charge() mult0 = molecule.multiplicity() chargep = charge0 + 1 chargem = charge0 - 1 multp = kwargs.get('cation_mult', mult0 + 1) multm = kwargs.get('anion_mult', mult0 + 1) # By default, we start the frac procedure on the 25th iteration # when not reading a previous guess frac_start = kwargs.get('frac_start', 25) # By default, we occupy by tenths of electrons HOMO_occs = kwargs.get( 'HOMO_occs', [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0]) LUMO_occs = kwargs.get( 'LUMO_occs', [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0]) # By default, H**O and LUMO are both in alpha Z = 0 for A in range(molecule.natom()): Z += molecule.Z(A) Z -= charge0 H**O = kwargs.get('H**O', (Z / 2 + 1 if (Z % 2) else Z / 2)) LUMO = kwargs.get('LUMO', H**O + 1) # By default, DIIS in FRAC (1.0 occupation is always DIIS'd) frac_diis = kwargs.get('frac_diis', True) # By default, use the neutral orbitals as a guess for the anion neutral_guess = kwargs.get('neutral_guess', True) # By default, burn-in with UHF first, if UKS hf_guess = False if core.get_local_option('SCF', 'REFERENCE') == 'UKS': hf_guess = kwargs.get('hf_guess', True) # By default, re-guess at each N continuous_guess = kwargs.get('continuous_guess', False) # By default, drop the files to the molecule's name root = kwargs.get('filename', molecule.name()) traverse_filename = root + '.traverse.dat' # => Traverse <= # occs = [] energies = [] potentials = [] convs = [] # => Run the neutral for its orbitals, if requested <= # core.set_local_option("SCF", "DF_INTS_IO", "SAVE") old_guess = core.get_local_option("SCF", "GUESS") if (neutral_guess): if (hf_guess): core.set_local_option("SCF", "REFERENCE", "UHF") driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs) core.set_local_option("SCF", "GUESS", "READ") core.set_local_option("SCF", "DF_INTS_IO", "LOAD") # => Run the anion first <= # molecule.set_molecular_charge(chargem) molecule.set_multiplicity(multm) # => Burn the anion in with hf, if requested <= # if hf_guess: core.set_local_option("SCF", "REFERENCE", "UHF") driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs) core.set_local_option("SCF", "REFERENCE", "UKS") core.set_local_option("SCF", "GUESS", "READ") core.set_local_option("SCF", "DF_INTS_IO", "SAVE") core.set_local_option("SCF", "FRAC_START", frac_start) core.set_local_option("SCF", "FRAC_RENORMALIZE", True) # NYI core.set_local_option("SCF", "FRAC_LOAD", False) for occ in LUMO_occs: core.set_local_option("SCF", "FRAC_OCC", [LUMO]) core.set_local_option("SCF", "FRAC_VAL", [occ]) E, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, **kwargs) C = 1 if E == 0.0: E = core.variable('SCF ITERATION ENERGY') C = 0 if LUMO > 0: eps = wfn.epsilon_a() potentials.append(eps.get(int(LUMO) - 1)) else: eps = wfn.epsilon_b() potentials.append(eps.get(-int(LUMO) - 1)) occs.append(occ) energies.append(E) convs.append(C) core.set_local_option("SCF", "FRAC_START", 2) #core.set_local_option("SCF", "FRAC_LOAD", True) core.set_local_option("SCF", "GUESS", "READ") core.set_local_option("SCF", "FRAC_DIIS", frac_diis) core.set_local_option("SCF", "DF_INTS_IO", "LOAD") # => Run the neutral next <= # molecule.set_molecular_charge(charge0) molecule.set_multiplicity(mult0) # Burn the neutral in with hf, if requested <= # if not continuous_guess: core.set_local_option("SCF", "GUESS", old_guess) if hf_guess: core.set_local_option("SCF", "FRAC_START", 0) core.set_local_option("SCF", "REFERENCE", "UHF") driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs) core.set_local_option("SCF", "REFERENCE", "UKS") core.set_local_option("SCF", "GUESS", "READ") # NYI core.set_local_option("SCF", "FRAC_LOAD", False) core.set_local_option("SCF", "FRAC_START", frac_start) core.set_local_option("SCF", "FRAC_RENORMALIZE", True) for occ in HOMO_occs: core.set_local_option("SCF", "FRAC_OCC", [H**O]) core.set_local_option("SCF", "FRAC_VAL", [occ]) E, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, **kwargs) C = 1 if E == 0.0: E = core.variable('SCF ITERATION ENERGY') C = 0 if LUMO > 0: eps = wfn.epsilon_a() potentials.append(eps.get(int(H**O) - 1)) else: eps = wfn.epsilon_b() potentials.append(eps.get(-int(H**O) - 1)) occs.append(occ - 1.0) energies.append(E) convs.append(C) core.set_local_option("SCF", "FRAC_START", 2) # NYI core.set_local_option("SCF", "FRAC_LOAD", True) core.set_local_option("SCF", "GUESS", "READ") core.set_local_option("SCF", "FRAC_DIIS", frac_diis) core.set_local_option("SCF", "DF_INTS_IO", "LOAD") # => Print the results out <= # E = {} core.print_out( """\n ==> Fractional Occupation Traverse Results <==\n\n""") core.print_out(""" %-11s %-24s %-24s %11s\n""" % ('N', 'Energy', 'H**O Energy', 'Converged')) for k in range(len(occs)): core.print_out(""" %11.3E %24.16E %24.16E %11d\n""" % (occs[k], energies[k], potentials[k], convs[k])) E[occs[k]] = energies[k] core.print_out(""" You trying to be a hero Watkins? Just trying to kill some bugs sir! -Starship Troopers""") # Drop the files out with open(traverse_filename, 'w') as fh: fh.write(""" %-11s %-24s %-24s %11s\n""" % ('N', 'Energy', 'H**O Energy', 'Converged')) for k in range(len(occs)): fh.write(""" %11.3E %24.16E %24.16E %11d\n""" % (occs[k], energies[k], potentials[k], convs[k])) optstash.restore() return E
def mcscf_solver(ref_wfn): # Build CIWavefunction core.prepare_options_for_module("DETCI") ciwfn = core.CIWavefunction(ref_wfn) # Hush a lot of CI output ciwfn.set_print(0) # Begin with a normal two-step step_type = 'Initial CI' total_step = core.Matrix("Total step", ciwfn.get_dimension('OA'), ciwfn.get_dimension('AV')) start_orbs = ciwfn.get_orbitals("ROT").clone() ciwfn.set_orbitals("ROT", start_orbs) # Grab da options mcscf_orb_grad_conv = core.get_option("DETCI", "MCSCF_R_CONVERGENCE") mcscf_e_conv = core.get_option("DETCI", "MCSCF_E_CONVERGENCE") mcscf_max_macroiteration = core.get_option("DETCI", "MCSCF_MAXITER") mcscf_type = core.get_option("DETCI", "MCSCF_TYPE") mcscf_d_file = core.get_option("DETCI", "CI_FILE_START") + 3 mcscf_nroots = core.get_option("DETCI", "NUM_ROOTS") mcscf_wavefunction_type = core.get_option("DETCI", "WFN") mcscf_ndet = ciwfn.ndet() mcscf_nuclear_energy = ciwfn.molecule().nuclear_repulsion_energy() mcscf_steplimit = core.get_option("DETCI", "MCSCF_MAX_ROT") mcscf_rotate = core.get_option("DETCI", "MCSCF_ROTATE") # DIIS info mcscf_diis_start = core.get_option("DETCI", "MCSCF_DIIS_START") mcscf_diis_freq = core.get_option("DETCI", "MCSCF_DIIS_FREQ") mcscf_diis_error_type = core.get_option("DETCI", "MCSCF_DIIS_ERROR_TYPE") mcscf_diis_max_vecs = core.get_option("DETCI", "MCSCF_DIIS_MAX_VECS") # One-step info mcscf_target_conv_type = core.get_option("DETCI", "MCSCF_ALGORITHM") mcscf_so_start_grad = core.get_option("DETCI", "MCSCF_SO_START_GRAD") mcscf_so_start_e = core.get_option("DETCI", "MCSCF_SO_START_E") mcscf_current_step_type = 'Initial CI' # Start with SCF energy and other params scf_energy = core.get_variable("HF TOTAL ENERGY") eold = scf_energy norb_iter = 1 converged = False ah_step = False qc_step = False approx_integrals_only = True # Fake info to start with the inital diagonalization ediff = 1.e-4 orb_grad_rms = 1.e-3 # Grab needed objects diis_obj = solvers.DIIS(mcscf_diis_max_vecs) mcscf_obj = ciwfn.mcscf_object() # Execute the rotate command for rot in mcscf_rotate: if len(rot) != 4: raise p4util.PsiException("Each element of the MCSCF rotate command requires 4 arguements (irrep, orb1, orb2, theta).") irrep, orb1, orb2, theta = rot if irrep > ciwfn.Ca().nirrep(): raise p4util.PsiException("MCSCF_ROTATE: Expression %s irrep number is larger than the number of irreps" % (str(rot))) if max(orb1, orb2) > ciwfn.Ca().coldim()[irrep]: raise p4util.PsiException("MCSCF_ROTATE: Expression %s orbital number exceeds number of orbitals in irrep" % (str(rot))) theta = np.deg2rad(theta) x = ciwfn.Ca().nph[irrep][:, orb1].copy() y = ciwfn.Ca().nph[irrep][:, orb2].copy() xp = np.cos(theta) * x - np.sin(theta) * y yp = np.sin(theta) * x + np.cos(theta) * y ciwfn.Ca().nph[irrep][:, orb1] = xp ciwfn.Ca().nph[irrep][:, orb2] = yp # Limited RAS functionality if core.get_local_option("DETCI", "WFN") == "RASSCF" and mcscf_target_conv_type != "TS": core.print_out("\n Warning! Only the TS algorithm for RASSCF wavefunction is currently supported.\n") core.print_out(" Switching to the TS algorithm.\n\n") mcscf_target_conv_type = "TS" # Print out headers if mcscf_type == "CONV": mtype = " @MCSCF" core.print_out("\n ==> Starting MCSCF iterations <==\n\n") core.print_out(" Iter Total Energy Delta E Orb RMS CI RMS NCI NORB\n") elif mcscf_type == "DF": mtype = " @DF-MCSCF" core.print_out("\n ==> Starting DF-MCSCF iterations <==\n\n") core.print_out(" Iter Total Energy Delta E Orb RMS CI RMS NCI NORB\n") else: mtype = " @AO-MCSCF" core.print_out("\n ==> Starting AO-MCSCF iterations <==\n\n") core.print_out(" Iter Total Energy Delta E Orb RMS CI RMS NCI NORB\n") # Iterate ! for mcscf_iter in range(1, mcscf_max_macroiteration + 1): # Transform integrals, diagonalize H ciwfn.transform_mcscf_integrals(approx_integrals_only) nci_iter = ciwfn.diag_h(abs(ediff) * 1.e-2, orb_grad_rms * 1.e-3) # After the first diag we need to switch to READ ciwfn.set_ci_guess("DFILE") ciwfn.form_opdm() ciwfn.form_tpdm() ci_grad_rms = core.get_variable("DETCI AVG DVEC NORM") # Update MCSCF object Cocc = ciwfn.get_orbitals("DOCC") Cact = ciwfn.get_orbitals("ACT") Cvir = ciwfn.get_orbitals("VIR") opdm = ciwfn.get_opdm(-1, -1, "SUM", False) tpdm = ciwfn.get_tpdm("SUM", True) mcscf_obj.update(Cocc, Cact, Cvir, opdm, tpdm) current_energy = core.get_variable("MCSCF TOTAL ENERGY") orb_grad_rms = mcscf_obj.gradient_rms() ediff = current_energy - eold # Print iterations print_iteration(mtype, mcscf_iter, current_energy, ediff, orb_grad_rms, ci_grad_rms, nci_iter, norb_iter, mcscf_current_step_type) eold = current_energy if mcscf_current_step_type == 'Initial CI': mcscf_current_step_type = 'TS' # Check convergence if (orb_grad_rms < mcscf_orb_grad_conv) and (abs(ediff) < abs(mcscf_e_conv)) and\ (mcscf_iter > 3) and not qc_step: core.print_out("\n %s has converged!\n\n" % mtype); converged = True break # Which orbital convergence are we doing? if ah_step: converged, norb_iter, step = ah_iteration(mcscf_obj, print_micro=False) norb_iter += 1 if converged: mcscf_current_step_type = 'AH' else: core.print_out(" !Warning. Augmented Hessian did not converge. Taking an approx step.\n") step = mcscf_obj.approx_solve() mcscf_current_step_type = 'TS, AH failure' else: step = mcscf_obj.approx_solve() step_type = 'TS' maxstep = step.absmax() if maxstep > mcscf_steplimit: core.print_out(' Warning! Maxstep = %4.2f, scaling to %4.2f\n' % (maxstep, mcscf_steplimit)) step.scale(mcscf_steplimit / maxstep) xstep = total_step.clone() total_step.add(step) # Do or add DIIS if (mcscf_iter >= mcscf_diis_start) and ("TS" in mcscf_current_step_type): # Figure out DIIS error vector if mcscf_diis_error_type == "GRAD": error = core.Matrix.triplet(ciwfn.get_orbitals("OA"), mcscf_obj.gradient(), ciwfn.get_orbitals("AV"), False, False, True) else: error = step diis_obj.add(total_step, error) if not (mcscf_iter % mcscf_diis_freq): total_step = diis_obj.extrapolate() mcscf_current_step_type = 'TS, DIIS' # Build the rotation by continuous updates if mcscf_iter == 1: totalU = mcscf_obj.form_rotation_matrix(total_step) else: xstep.axpy(-1.0, total_step) xstep.scale(-1.0) Ustep = mcscf_obj.form_rotation_matrix(xstep) totalU = core.Matrix.doublet(totalU, Ustep, False, False) # Build the rotation directly (not recommended) # orbs_mat = mcscf_obj.Ck(start_orbs, total_step) # Finally rotate and set orbitals orbs_mat = core.Matrix.doublet(start_orbs, totalU, False, False) ciwfn.set_orbitals("ROT", orbs_mat) # Figure out what the next step should be if (orb_grad_rms < mcscf_so_start_grad) and (abs(ediff) < abs(mcscf_so_start_e)) and\ (mcscf_iter >= 2): if mcscf_target_conv_type == 'AH': approx_integrals_only = False ah_step = True elif mcscf_target_conv_type == 'OS': approx_integrals_only = False mcscf_current_step_type = 'OS, Prep' break else: continue #raise p4util.PsiException("") # If we converged do not do onestep if converged or (mcscf_target_conv_type != 'OS'): one_step_iters = [] # If we are not converged load in Dvec and build iters array else: one_step_iters = range(mcscf_iter + 1, mcscf_max_macroiteration + 1) dvec = ciwfn.D_vector() dvec.init_io_files(True) dvec.read(0, 0) dvec.symnormalize(1.0, 0) ci_grad = ciwfn.new_civector(1, mcscf_d_file + 1, True, True) ci_grad.set_nvec(1) ci_grad.init_io_files(True) # Loop for onestep for mcscf_iter in one_step_iters: # Transform integrals and update the MCSCF object ciwfn.transform_mcscf_integrals(ciwfn.H(), False) ciwfn.form_opdm() ciwfn.form_tpdm() # Update MCSCF object Cocc = ciwfn.get_orbitals("DOCC") Cact = ciwfn.get_orbitals("ACT") Cvir = ciwfn.get_orbitals("VIR") opdm = ciwfn.get_opdm(-1, -1, "SUM", False) tpdm = ciwfn.get_tpdm("SUM", True) mcscf_obj.update(Cocc, Cact, Cvir, opdm, tpdm) orb_grad_rms = mcscf_obj.gradient_rms() # Warning! Does not work for SA-MCSCF current_energy = mcscf_obj.current_total_energy() current_energy += mcscf_nuclear_energy core.set_variable("CI ROOT %d TOTAL ENERGY" % 1, current_energy) core.set_variable("CURRENT ENERGY", current_energy) docc_energy = mcscf_obj.current_docc_energy() ci_energy = mcscf_obj.current_ci_energy() # Compute CI gradient ciwfn.sigma(dvec, ci_grad, 0, 0) ci_grad.scale(2.0, 0) ci_grad.axpy(-2.0 * ci_energy, dvec, 0, 0) ci_grad_rms = ci_grad.norm(0) orb_grad_rms = mcscf_obj.gradient().rms() ediff = current_energy - eold print_iteration(mtype, mcscf_iter, current_energy, ediff, orb_grad_rms, ci_grad_rms, nci_iter, norb_iter, mcscf_current_step_type) mcscf_current_step_type = 'OS' eold = current_energy if (orb_grad_rms < mcscf_orb_grad_conv) and (abs(ediff) < abs(mcscf_e_conv)): core.print_out("\n %s has converged!\n\n" % mtype); converged = True break # Take a step converged, norb_iter, nci_iter, step = qc_iteration(dvec, ci_grad, ciwfn, mcscf_obj) # Rotate integrals to new frame total_step.add(step) orbs_mat = mcscf_obj.Ck(ciwfn.get_orbitals("ROT"), step) ciwfn.set_orbitals("ROT", orbs_mat) core.print_out(mtype + " Final Energy: %20.15f\n" % current_energy) # Die if we did not converge if (not converged): if core.get_global_option("DIE_IF_NOT_CONVERGED"): raise p4util.PsiException("MCSCF: Iterations did not converge!") else: core.print_out("\nWarning! MCSCF iterations did not converge!\n\n") # Print out CI vector information if mcscf_target_conv_type == 'OS': dvec.close_io_files() ci_grad.close_io_files() # For orbital invariant methods we transform the orbitals to the natural or # semicanonical basis. Frozen doubly occupied and virtual orbitals are not # modified. if core.get_option("DETCI", "WFN") == "CASSCF": # Do we diagonalize the opdm? if core.get_option("DETCI", "NAT_ORBS"): ciwfn.ci_nat_orbs() else: ciwfn.semicanonical_orbs() # Retransform intragrals and update CI coeffs., OPDM, and TPDM ciwfn.transform_mcscf_integrals(approx_integrals_only) nci_iter = ciwfn.diag_h(abs(ediff) * 1.e-2, orb_grad_rms * 1.e-3) ciwfn.set_ci_guess("DFILE") ciwfn.form_opdm() ciwfn.form_tpdm() proc_util.print_ci_results(ciwfn, "MCSCF", scf_energy, current_energy, print_opdm_no=True) # Set final energy core.set_variable("CURRENT ENERGY", core.get_variable("MCSCF TOTAL ENERGY")) # What do we need to cleanup? if core.get_option("DETCI", "MCSCF_CI_CLEANUP"): ciwfn.cleanup_ci() if core.get_option("DETCI", "MCSCF_DPD_CLEANUP"): ciwfn.cleanup_dpd() del diis_obj del mcscf_obj return ciwfn
def run_roa(name, **kwargs): """ Main driver for managing Raman Optical activity computations with CC response theory. Uses distributed finite differences approach --> 1. Sets up a database to keep track of running/finished/waiting computations. 2. Generates separate input files for displaced geometries. 3. When all displacements are run, collects the necessary information from each displaced computation, and computes final result. """ # Get list of omega values -> Make sure we only have one wavelength # Catch this now before any real work gets done omega = core.get_option('CCRESPONSE', 'OMEGA') if len(omega) > 2: raise Exception('ROA scattering can only be performed for one wavelength.') else: pass core.print_out( 'Running ROA computation. Subdirectories for each ' 'required displaced geometry have been created.\n\n') dbno = 0 # Initialize database db = shelve.open('database', writeback=True) # Check if final result is in here # ->if we have already computed roa, back up the dict # ->copy it setting this flag to false and continue if ('roa_computed' in db) and ( db['roa_computed'] ): db2 = shelve.open('.database.bak{}'.format(dbno), writeback=True) dbno += 1 for key,value in db.items(): db2[key]=value db2.close() db['roa_computed'] = False else: db['roa_computed'] = False if 'inputs_generated' not in db: findif_response_utils.initialize_database(db,name,"roa", ["roa_tensor"]) # Generate input files if not db['inputs_generated']: findif_response_utils.generate_inputs(db,name) # handled by helper db['inputs_generated'] = True # Check job status if db['inputs_generated'] and not db['jobs_complete']: print('Checking status') findif_response_utils.stat(db) for job, status in db['job_status'].items(): print("{} --> {}".format(job, status)) # Compute ROA Scattering if db['jobs_complete']: mygauge = core.get_option('CCRESPONSE', 'GAUGE') consider_gauge = { 'LENGTH': ['Length Gauge'], 'VELOCITY': ['Modified Velocity Gauge'], 'BOTH': ['Length Gauge', 'Modified Velocity Gauge'] } gauge_list = ["{} Results".format(x) for x in consider_gauge[mygauge]] # Gather data dip_polar_list = findif_response_utils.collect_displaced_matrix_data( db, 'Dipole Polarizability', 3) opt_rot_list = [ x for x in ( findif_response_utils.collect_displaced_matrix_data( db, "Optical Rotation Tensor ({})".format(gauge), 3 ) for gauge in consider_gauge[mygauge] ) ] dip_quad_polar_list = findif_response_utils.collect_displaced_matrix_data( db, "Electric-Dipole/Quadrupole Polarizability", 9) # Compute Scattering # Run new function (src/bin/ccresponse/scatter.cc) core.print_out('Running scatter function') step = core.get_local_option('FINDIF', 'DISP_SIZE') for g_idx, gauge in enumerate(opt_rot_list): print('\n\n----------------------------------------------------------------------') print('\t%%%%%%%%%% {} %%%%%%%%%%'.format(gauge_list[g_idx])) print('----------------------------------------------------------------------\n\n') core.print_out('\n\n----------------------------------------------------------------------\n') core.print_out('\t%%%%%%%%%% {} %%%%%%%%%%\n'.format(gauge_list[g_idx])) core.print_out('----------------------------------------------------------------------\n\n') print('roa.py:85 I am not being passed a molecule, grabbing from global :(') core.scatter(core.get_active_molecule(), step, dip_polar_list, gauge, dip_quad_polar_list) db['roa_computed'] = True db.close()
def scf_initialize(self): """Specialized initialization, compute integrals and does everything to prepare for iterations""" # Figure out memory distributions # Get memory in terms of doubles total_memory = (core.get_memory() / 8) * core.get_global_option("SCF_MEM_SAFETY_FACTOR") # Figure out how large the DFT collocation matrices are vbase = self.V_potential() if vbase: collocation_size = vbase.grid().collocation_size() if vbase.functional().ansatz() == 1: collocation_size *= 4 # First derivs elif vbase.functional().ansatz() == 2: collocation_size *= 10 # Second derivs else: collocation_size = 0 # Change allocation for collocation matrices based on DFT type jk = _build_jk(self, total_memory) jk_size = jk.memory_estimate() # Give remaining to collocation if total_memory > jk_size: collocation_memory = total_memory - jk_size # Give up to 10% to collocation elif (total_memory * 0.1) > collocation_size: collocation_memory = collocation_size else: collocation_memory = total_memory * 0.1 if collocation_memory > collocation_size: collocation_memory = collocation_size # Set constants self.iteration_ = 0 self.memory_jk_ = int(total_memory - collocation_memory) self.memory_collocation_ = int(collocation_memory) if self.get_print(): core.print_out(" ==> Integral Setup <==\n\n") # Initialize EFP efp_enabled = hasattr(self.molecule(), 'EFP') if efp_enabled: # EFP: Set QM system, options, and callback. Display efp geom in [A] efpobj = self.molecule().EFP core.print_out(efpobj.banner()) core.print_out( efpobj.geometry_summary(units_to_bohr=constants.bohr2angstroms)) efpptc, efpcoords, efpopts = get_qm_atoms_opts(self.molecule()) efpobj.set_point_charges(efpptc, efpcoords) efpobj.set_opts(efpopts, label='psi', append='psi') efpobj.set_electron_density_field_fn(efp_field_fn) # Initialize all integrals and perform the first guess if self.attempt_number_ == 1: mints = core.MintsHelper(self.basisset()) self.initialize_jk(self.memory_jk_, jk=jk) if self.V_potential(): self.V_potential().build_collocation_cache( self.memory_collocation_) core.timer_on("HF: Form core H") self.form_H() core.timer_off("HF: Form core H") if efp_enabled: # EFP: Add in permanent moment contribution and cache core.timer_on("HF: Form Vefp") verbose = core.get_option('SCF', "PRINT") Vefp = modify_Fock_permanent(self.molecule(), mints, verbose=verbose - 1) Vefp = core.Matrix.from_array(Vefp) self.H().add(Vefp) Horig = self.H().clone() self.Horig = Horig core.print_out( " QM/EFP: iterating Total Energy including QM/EFP Induction\n" ) core.timer_off("HF: Form Vefp") core.timer_on("HF: Form S/X") self.form_Shalf() core.timer_off("HF: Form S/X") core.print_out("\n ==> Pre-Iterations <==\n\n") core.timer_on("HF: Guess") self.guess() core.timer_off("HF: Guess") # Print out initial docc/socc/etc data if self.get_print(): lack_occupancy = core.get_local_option('SCF', 'GUESS') in ['SAD'] if core.get_global_option('GUESS') in ['SAD']: lack_occupancy = core.get_local_option('SCF', 'GUESS') in ['AUTO'] self.print_preiterations(small=lack_occupancy) else: self.print_preiterations(small=lack_occupancy) else: # We're reading the orbitals from the previous set of iterations. self.form_D() self.set_energies("Total Energy", self.compute_initial_E()) # turn off VV10 for iterations if core.get_option( 'SCF', "DFT_VV10_POSTSCF") and self.functional().vv10_b() > 0.0: core.print_out(" VV10: post-SCF option active \n \n") self.functional().set_lock(False) self.functional().set_do_vv10(False) self.functional().set_lock(True) # Print iteration header is_dfjk = core.get_global_option('SCF_TYPE').endswith('DF') diis_rms = core.get_option('SCF', 'DIIS_RMS_ERROR') core.print_out(" ==> Iterations <==\n\n") core.print_out( "%s Total Energy Delta E %s |[F,P]|\n\n" % (" " if is_dfjk else "", "RMS" if diis_rms else "MAX"))
def mcscf_solver(ref_wfn): # Build CIWavefunction core.prepare_options_for_module("DETCI") ciwfn = core.CIWavefunction(ref_wfn) # Hush a lot of CI output ciwfn.set_print(0) # Begin with a normal two-step step_type = 'Initial CI' total_step = core.Matrix("Total step", ciwfn.get_dimension('OA'), ciwfn.get_dimension('AV')) start_orbs = ciwfn.get_orbitals("ROT").clone() ciwfn.set_orbitals("ROT", start_orbs) # Grab da options mcscf_orb_grad_conv = core.get_option("DETCI", "MCSCF_R_CONVERGENCE") mcscf_e_conv = core.get_option("DETCI", "MCSCF_E_CONVERGENCE") mcscf_max_macroiteration = core.get_option("DETCI", "MCSCF_MAXITER") mcscf_type = core.get_option("DETCI", "MCSCF_TYPE") mcscf_d_file = core.get_option("DETCI", "CI_FILE_START") + 3 mcscf_nroots = core.get_option("DETCI", "NUM_ROOTS") mcscf_wavefunction_type = core.get_option("DETCI", "WFN") mcscf_ndet = ciwfn.ndet() mcscf_nuclear_energy = ciwfn.molecule().nuclear_repulsion_energy() mcscf_steplimit = core.get_option("DETCI", "MCSCF_MAX_ROT") mcscf_rotate = core.get_option("DETCI", "MCSCF_ROTATE") # DIIS info mcscf_diis_start = core.get_option("DETCI", "MCSCF_DIIS_START") mcscf_diis_freq = core.get_option("DETCI", "MCSCF_DIIS_FREQ") mcscf_diis_error_type = core.get_option("DETCI", "MCSCF_DIIS_ERROR_TYPE") mcscf_diis_max_vecs = core.get_option("DETCI", "MCSCF_DIIS_MAX_VECS") # One-step info mcscf_target_conv_type = core.get_option("DETCI", "MCSCF_ALGORITHM") mcscf_so_start_grad = core.get_option("DETCI", "MCSCF_SO_START_GRAD") mcscf_so_start_e = core.get_option("DETCI", "MCSCF_SO_START_E") mcscf_current_step_type = 'Initial CI' # Start with SCF energy and other params scf_energy = ciwfn.variable("HF TOTAL ENERGY") eold = scf_energy norb_iter = 1 converged = False ah_step = False qc_step = False approx_integrals_only = True # Fake info to start with the initial diagonalization ediff = 1.e-4 orb_grad_rms = 1.e-3 # Grab needed objects diis_obj = solvers.DIIS(mcscf_diis_max_vecs) mcscf_obj = ciwfn.mcscf_object() # Execute the rotate command for rot in mcscf_rotate: if len(rot) != 4: raise p4util.PsiException( "Each element of the MCSCF rotate command requires 4 arguements (irrep, orb1, orb2, theta)." ) irrep, orb1, orb2, theta = rot if irrep > ciwfn.Ca().nirrep(): raise p4util.PsiException( "MCSCF_ROTATE: Expression %s irrep number is larger than the number of irreps" % (str(rot))) if max(orb1, orb2) > ciwfn.Ca().coldim()[irrep]: raise p4util.PsiException( "MCSCF_ROTATE: Expression %s orbital number exceeds number of orbitals in irrep" % (str(rot))) theta = np.deg2rad(theta) x = ciwfn.Ca().nph[irrep][:, orb1].copy() y = ciwfn.Ca().nph[irrep][:, orb2].copy() xp = np.cos(theta) * x - np.sin(theta) * y yp = np.sin(theta) * x + np.cos(theta) * y ciwfn.Ca().nph[irrep][:, orb1] = xp ciwfn.Ca().nph[irrep][:, orb2] = yp # Limited RAS functionality if core.get_local_option( "DETCI", "WFN") == "RASSCF" and mcscf_target_conv_type != "TS": core.print_out( "\n Warning! Only the TS algorithm for RASSCF wavefunction is currently supported.\n" ) core.print_out(" Switching to the TS algorithm.\n\n") mcscf_target_conv_type = "TS" # Print out headers if mcscf_type == "CONV": mtype = " @MCSCF" core.print_out("\n ==> Starting MCSCF iterations <==\n\n") core.print_out( " Iter Total Energy Delta E Orb RMS CI RMS NCI NORB\n" ) elif mcscf_type == "DF": mtype = " @DF-MCSCF" core.print_out("\n ==> Starting DF-MCSCF iterations <==\n\n") core.print_out( " Iter Total Energy Delta E Orb RMS CI RMS NCI NORB\n" ) else: mtype = " @AO-MCSCF" core.print_out("\n ==> Starting AO-MCSCF iterations <==\n\n") core.print_out( " Iter Total Energy Delta E Orb RMS CI RMS NCI NORB\n" ) # Iterate ! for mcscf_iter in range(1, mcscf_max_macroiteration + 1): # Transform integrals, diagonalize H ciwfn.transform_mcscf_integrals(approx_integrals_only) nci_iter = ciwfn.diag_h(abs(ediff) * 1.e-2, orb_grad_rms * 1.e-3) # After the first diag we need to switch to READ ciwfn.set_ci_guess("DFILE") ciwfn.form_opdm() ciwfn.form_tpdm() ci_grad_rms = core.variable("DETCI AVG DVEC NORM") # Update MCSCF object Cocc = ciwfn.get_orbitals("DOCC") Cact = ciwfn.get_orbitals("ACT") Cvir = ciwfn.get_orbitals("VIR") opdm = ciwfn.get_opdm(-1, -1, "SUM", False) tpdm = ciwfn.get_tpdm("SUM", True) mcscf_obj.update(Cocc, Cact, Cvir, opdm, tpdm) current_energy = core.variable("MCSCF TOTAL ENERGY") orb_grad_rms = mcscf_obj.gradient_rms() ediff = current_energy - eold # Print iterations print_iteration(mtype, mcscf_iter, current_energy, ediff, orb_grad_rms, ci_grad_rms, nci_iter, norb_iter, mcscf_current_step_type) eold = current_energy if mcscf_current_step_type == 'Initial CI': mcscf_current_step_type = 'TS' # Check convergence if (orb_grad_rms < mcscf_orb_grad_conv) and (abs(ediff) < abs(mcscf_e_conv)) and\ (mcscf_iter > 3) and not qc_step: core.print_out("\n %s has converged!\n\n" % mtype) converged = True break # Which orbital convergence are we doing? if ah_step: converged, norb_iter, step = ah_iteration(mcscf_obj, print_micro=False) norb_iter += 1 if converged: mcscf_current_step_type = 'AH' else: core.print_out( " !Warning. Augmented Hessian did not converge. Taking an approx step.\n" ) step = mcscf_obj.approx_solve() mcscf_current_step_type = 'TS, AH failure' else: step = mcscf_obj.approx_solve() step_type = 'TS' maxstep = step.absmax() if maxstep > mcscf_steplimit: core.print_out( ' Warning! Maxstep = %4.2f, scaling to %4.2f\n' % (maxstep, mcscf_steplimit)) step.scale(mcscf_steplimit / maxstep) xstep = total_step.clone() total_step.add(step) # Do or add DIIS if (mcscf_iter >= mcscf_diis_start) and ("TS" in mcscf_current_step_type): # Figure out DIIS error vector if mcscf_diis_error_type == "GRAD": error = core.Matrix.triplet(ciwfn.get_orbitals("OA"), mcscf_obj.gradient(), ciwfn.get_orbitals("AV"), False, False, True) else: error = step diis_obj.add(total_step, error) if not (mcscf_iter % mcscf_diis_freq): total_step = diis_obj.extrapolate() mcscf_current_step_type = 'TS, DIIS' # Build the rotation by continuous updates if mcscf_iter == 1: totalU = mcscf_obj.form_rotation_matrix(total_step) else: xstep.axpy(-1.0, total_step) xstep.scale(-1.0) Ustep = mcscf_obj.form_rotation_matrix(xstep) totalU = core.Matrix.doublet(totalU, Ustep, False, False) # Build the rotation directly (not recommended) # orbs_mat = mcscf_obj.Ck(start_orbs, total_step) # Finally rotate and set orbitals orbs_mat = core.Matrix.doublet(start_orbs, totalU, False, False) ciwfn.set_orbitals("ROT", orbs_mat) # Figure out what the next step should be if (orb_grad_rms < mcscf_so_start_grad) and (abs(ediff) < abs(mcscf_so_start_e)) and\ (mcscf_iter >= 2): if mcscf_target_conv_type == 'AH': approx_integrals_only = False ah_step = True elif mcscf_target_conv_type == 'OS': approx_integrals_only = False mcscf_current_step_type = 'OS, Prep' break else: continue #raise p4util.PsiException("") # If we converged do not do onestep if converged or (mcscf_target_conv_type != 'OS'): one_step_iters = [] # If we are not converged load in Dvec and build iters array else: one_step_iters = range(mcscf_iter + 1, mcscf_max_macroiteration + 1) dvec = ciwfn.D_vector() dvec.init_io_files(True) dvec.read(0, 0) dvec.symnormalize(1.0, 0) ci_grad = ciwfn.new_civector(1, mcscf_d_file + 1, True, True) ci_grad.set_nvec(1) ci_grad.init_io_files(True) # Loop for onestep for mcscf_iter in one_step_iters: # Transform integrals and update the MCSCF object ciwfn.transform_mcscf_integrals(ciwfn.H(), False) ciwfn.form_opdm() ciwfn.form_tpdm() # Update MCSCF object Cocc = ciwfn.get_orbitals("DOCC") Cact = ciwfn.get_orbitals("ACT") Cvir = ciwfn.get_orbitals("VIR") opdm = ciwfn.get_opdm(-1, -1, "SUM", False) tpdm = ciwfn.get_tpdm("SUM", True) mcscf_obj.update(Cocc, Cact, Cvir, opdm, tpdm) orb_grad_rms = mcscf_obj.gradient_rms() # Warning! Does not work for SA-MCSCF current_energy = mcscf_obj.current_total_energy() current_energy += mcscf_nuclear_energy core.set_variable("CI ROOT %d TOTAL ENERGY" % 1, current_energy) core.set_variable("CURRENT ENERGY", current_energy) docc_energy = mcscf_obj.current_docc_energy() ci_energy = mcscf_obj.current_ci_energy() # Compute CI gradient ciwfn.sigma(dvec, ci_grad, 0, 0) ci_grad.scale(2.0, 0) ci_grad.axpy(-2.0 * ci_energy, dvec, 0, 0) ci_grad_rms = ci_grad.norm(0) orb_grad_rms = mcscf_obj.gradient().rms() ediff = current_energy - eold print_iteration(mtype, mcscf_iter, current_energy, ediff, orb_grad_rms, ci_grad_rms, nci_iter, norb_iter, mcscf_current_step_type) mcscf_current_step_type = 'OS' eold = current_energy if (orb_grad_rms < mcscf_orb_grad_conv) and (abs(ediff) < abs(mcscf_e_conv)): core.print_out("\n %s has converged!\n\n" % mtype) converged = True break # Take a step converged, norb_iter, nci_iter, step = qc_iteration( dvec, ci_grad, ciwfn, mcscf_obj) # Rotate integrals to new frame total_step.add(step) orbs_mat = mcscf_obj.Ck(ciwfn.get_orbitals("ROT"), step) ciwfn.set_orbitals("ROT", orbs_mat) core.print_out(mtype + " Final Energy: %20.15f\n" % current_energy) # Die if we did not converge if (not converged): if core.get_global_option("DIE_IF_NOT_CONVERGED"): raise p4util.PsiException("MCSCF: Iterations did not converge!") else: core.print_out("\nWarning! MCSCF iterations did not converge!\n\n") # Print out CI vector information if mcscf_target_conv_type == 'OS': dvec.close_io_files() ci_grad.close_io_files() # For orbital invariant methods we transform the orbitals to the natural or # semicanonical basis. Frozen doubly occupied and virtual orbitals are not # modified. if core.get_option("DETCI", "WFN") == "CASSCF": # Do we diagonalize the opdm? if core.get_option("DETCI", "NAT_ORBS"): ciwfn.ci_nat_orbs() else: ciwfn.semicanonical_orbs() # Retransform intragrals and update CI coeffs., OPDM, and TPDM ciwfn.transform_mcscf_integrals(approx_integrals_only) nci_iter = ciwfn.diag_h(abs(ediff) * 1.e-2, orb_grad_rms * 1.e-3) ciwfn.set_ci_guess("DFILE") ciwfn.form_opdm() ciwfn.form_tpdm() proc_util.print_ci_results(ciwfn, "MCSCF", scf_energy, current_energy, print_opdm_no=True) # Set final energy core.set_variable("CURRENT ENERGY", core.variable("MCSCF TOTAL ENERGY")) # What do we need to cleanup? if core.get_option("DETCI", "MCSCF_CI_CLEANUP"): ciwfn.cleanup_ci() if core.get_option("DETCI", "MCSCF_DPD_CLEANUP"): ciwfn.cleanup_dpd() del diis_obj del mcscf_obj return ciwfn
def prepare_options_for_modules( changedOnly: bool = False, commandsInsteadDict: bool = False, globalsOnly: bool = False, stateInsteadMediated: bool = False, ) -> Union[Dict, str]: """Capture current state of C++ psi4.core.Options information. Parameters ---------- changedOnly Record info only for options that have been set (may still be default). When False, records values for every option. commandsInsteadDict Return string of commands to exec to reset options in current form. When False, return nested dictionary with globals in 'GLOBALS' subdictionary and locals in subdictionaries by module. globalsOnly Record only global options to save time querying the psi4.core.Options object. When False, record module-level options, too. stateInsteadMediated When ``True``, querying this function for options to be later *reset* into the same state -- the raw values and has_changed status at the global and local levels. When ``False``, querying this function for mediated options to be *used* -- the results of the globals/locals handshake as computed by the Options object itself. Here, ``dict[module][option][value]`` is the value to be used by module. Returns ------- dict When ``commandsInsteadDict=False``. str When ``commandsInsteadDict=True``. .. caution:: Some features are not yet implemented. Buy a developer a coffee. - command return doesn't revoke has_changed setting for unchanged with changedOnly=False - not all kwargs are independent """ has_changed_snapshot = {module: core.options_to_python(module) for module in _modules} options = collections.defaultdict(dict) commands = '' for opt in core.get_global_option_list(): hoc = core.has_global_option_changed(opt) if hoc or not changedOnly: if opt in ['DFT_CUSTOM_FUNCTIONAL', 'EXTERN']: # Feb 2017 hack continue val = core.get_global_option(opt) options['GLOBALS'][opt] = {'value': val, 'has_changed': hoc} if isinstance(val, str): commands += """core.set_global_option('%s', '%s')\n""" % (opt, val) else: commands += """core.set_global_option('%s', %s)\n""" % (opt, val) if globalsOnly: continue opt_snapshot = {k: v[opt] for k, v in has_changed_snapshot.items() if opt in v} for module, (lhoc, ohoc) in opt_snapshot.items(): if stateInsteadMediated: hoc = lhoc else: hoc = ohoc if hoc or not changedOnly: if stateInsteadMediated: val = core.get_local_option(module, opt) else: val = core.get_option(module, opt) options[module][opt] = {'value': val, 'has_changed': hoc} if isinstance(val, str): commands += """core.set_local_option('%s', '%s', '%s')\n""" % (module, opt, val) else: commands += """core.set_local_option('%s', '%s', %s)\n""" % (module, opt, val) if commandsInsteadDict: return commands else: return options
def frac_traverse(name, **kwargs): """Scan electron occupancy from +1 electron to -1. Parameters ---------- name : string or function DFT functional string name or function defining functional whose omega is to be optimized. molecule : :ref:`molecule <op_py_molecule>`, optional Target molecule (neutral) for which omega is to be tuned, if not last defined. cation_mult : int, optional Multiplicity of cation, if not neutral multiplicity + 1. anion_mult : int, optional Multiplicity of anion, if not neutral multiplicity + 1. frac_start : int, optional Iteration at which to start frac procedure when not reading previous guess. Defaults to 25. HOMO_occs : list, optional Occupations to step through for cation, by default `[1 - 0.1 * x for x in range(11)]`. LUMO_occs : list, optional Occupations to step through for anion, by default `[1 - 0.1 * x for x in range(11)]`. H**O : int, optional Index of H**O. LUMO : int, optional Index of LUMO. frac_diis : bool, optional Do use DIIS for non-1.0-occupied points? neutral_guess : bool, optional Do use neutral orbitals as guess for the anion? hf_guess: bool, optional Do use UHF guess before UKS? continuous_guess : bool, optional Do carry along guess rather than reguessing at each occupation? filename : str, optional Result filename, if not name of molecule. Returns ------- dict Dictionary associating SCF energies with occupations. """ optstash = p4util.OptionsState( ['SCF', 'GUESS'], ['SCF', 'DF_INTS_IO'], ['SCF', 'REFERENCE'], ["SCF", "FRAC_START"], ["SCF", "FRAC_RENORMALIZE"], #["SCF", "FRAC_LOAD"], ["SCF", "FRAC_OCC"], ["SCF", "FRAC_VAL"], ["SCF", "FRAC_DIIS"]) kwargs = p4util.kwargs_lower(kwargs) # Make sure the molecule the user provided is the active one, and neutral molecule = kwargs.pop('molecule', core.get_active_molecule()) molecule.update_geometry() if molecule.molecular_charge() != 0: raise ValidationError("""frac_traverse requires neutral molecule to start.""") if molecule.schoenflies_symbol() != 'c1': core.print_out(""" Requested procedure `frac_traverse` does not make use of molecular symmetry: """ """further calculations in C1 point group.\n""") molecule = molecule.clone() molecule.reset_point_group('c1') molecule.update_geometry() charge0 = molecule.molecular_charge() mult0 = molecule.multiplicity() chargep = charge0 + 1 chargem = charge0 - 1 multp = kwargs.get('cation_mult', mult0 + 1) multm = kwargs.get('anion_mult', mult0 + 1) # By default, we start the frac procedure on the 25th iteration # when not reading a previous guess frac_start = kwargs.get('frac_start', 25) # By default, we occupy by tenths of electrons HOMO_occs = kwargs.get('HOMO_occs', [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0]) LUMO_occs = kwargs.get('LUMO_occs', [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0]) # By default, H**O and LUMO are both in alpha Z = 0 for A in range(molecule.natom()): Z += molecule.Z(A) Z -= charge0 H**O = kwargs.get('H**O', (Z / 2 + 1 if (Z % 2) else Z / 2)) LUMO = kwargs.get('LUMO', H**O + 1) # By default, DIIS in FRAC (1.0 occupation is always DIIS'd) frac_diis = kwargs.get('frac_diis', True) # By default, use the neutral orbitals as a guess for the anion neutral_guess = kwargs.get('neutral_guess', True) # By default, burn-in with UHF first, if UKS hf_guess = False if core.get_local_option('SCF', 'REFERENCE') == 'UKS': hf_guess = kwargs.get('hf_guess', True) # By default, re-guess at each N continuous_guess = kwargs.get('continuous_guess', False) # By default, drop the files to the molecule's name root = kwargs.get('filename', molecule.name()) traverse_filename = root + '.traverse.dat' # => Traverse <= # occs = [] energies = [] potentials = [] convs = [] # => Run the neutral for its orbitals, if requested <= # core.set_local_option("SCF", "DF_INTS_IO", "SAVE") old_guess = core.get_local_option("SCF", "GUESS") if (neutral_guess): if (hf_guess): core.set_local_option("SCF", "REFERENCE", "UHF") driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs) core.set_local_option("SCF", "GUESS", "READ") core.set_local_option("SCF", "DF_INTS_IO", "LOAD") # => Run the anion first <= # molecule.set_molecular_charge(chargem) molecule.set_multiplicity(multm) # => Burn the anion in with hf, if requested <= # if hf_guess: core.set_local_option("SCF", "REFERENCE","UHF") driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs) core.set_local_option("SCF", "REFERENCE", "UKS") core.set_local_option("SCF", "GUESS", "READ") core.set_local_option("SCF", "DF_INTS_IO", "SAVE") core.set_local_option("SCF", "FRAC_START", frac_start) core.set_local_option("SCF", "FRAC_RENORMALIZE", True) # NYI core.set_local_option("SCF", "FRAC_LOAD", False) for occ in LUMO_occs: core.set_local_option("SCF", "FRAC_OCC", [LUMO]) core.set_local_option("SCF", "FRAC_VAL", [occ]) E, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, **kwargs) C = 1 if E == 0.0: E = core.variable('SCF ITERATION ENERGY') C = 0 if LUMO > 0: eps = wfn.epsilon_a() potentials.append(eps.get(int(LUMO) - 1)) else: eps = wfn.epsilon_b() potentials.append(eps.get(-int(LUMO) - 1)) occs.append(occ) energies.append(E) convs.append(C) core.set_local_option("SCF", "FRAC_START", 2) #core.set_local_option("SCF", "FRAC_LOAD", True) core.set_local_option("SCF", "GUESS", "READ") core.set_local_option("SCF", "FRAC_DIIS", frac_diis) core.set_local_option("SCF", "DF_INTS_IO", "LOAD") # => Run the neutral next <= # molecule.set_molecular_charge(charge0) molecule.set_multiplicity(mult0) # Burn the neutral in with hf, if requested <= # if not continuous_guess: core.set_local_option("SCF", "GUESS", old_guess) if hf_guess: core.set_local_option("SCF", "FRAC_START", 0) core.set_local_option("SCF", "REFERENCE", "UHF") driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs) core.set_local_option("SCF", "REFERENCE", "UKS") core.set_local_option("SCF", "GUESS", "READ") # NYI core.set_local_option("SCF", "FRAC_LOAD", False) core.set_local_option("SCF", "FRAC_START", frac_start) core.set_local_option("SCF", "FRAC_RENORMALIZE", True) for occ in HOMO_occs: core.set_local_option("SCF", "FRAC_OCC", [H**O]) core.set_local_option("SCF", "FRAC_VAL", [occ]) E, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, **kwargs) C = 1 if E == 0.0: E = core.variable('SCF ITERATION ENERGY') C = 0 if LUMO > 0: eps = wfn.epsilon_a() potentials.append(eps.get(int(H**O) - 1)) else: eps = wfn.epsilon_b() potentials.append(eps.get(-int(H**O) - 1)) occs.append(occ - 1.0) energies.append(E) convs.append(C) core.set_local_option("SCF", "FRAC_START", 2) # NYI core.set_local_option("SCF", "FRAC_LOAD", True) core.set_local_option("SCF", "GUESS", "READ") core.set_local_option("SCF", "FRAC_DIIS", frac_diis) core.set_local_option("SCF", "DF_INTS_IO", "LOAD") # => Print the results out <= # E = {} core.print_out("""\n ==> Fractional Occupation Traverse Results <==\n\n""") core.print_out(""" %-11s %-24s %-24s %11s\n""" % ('N', 'Energy', 'H**O Energy', 'Converged')) for k in range(len(occs)): core.print_out(""" %11.3E %24.16E %24.16E %11d\n""" % (occs[k], energies[k], potentials[k], convs[k])) E[occs[k]] = energies[k] core.print_out(""" You trying to be a hero Watkins? Just trying to kill some bugs sir! -Starship Troopers""") # Drop the files out with open(traverse_filename, 'w') as fh: fh.write(""" %-11s %-24s %-24s %11s\n""" % ('N', 'Energy', 'H**O Energy', 'Converged')) for k in range(len(occs)): fh.write(""" %11.3E %24.16E %24.16E %11d\n""" % (occs[k], energies[k], potentials[k], convs[k])) optstash.restore() return E