コード例 #1
0
def test_distance_rank_window():
    """Test distance rank window analysis."""
    distances = np.array([
        [0, 3, 1, 1, 2, 2, 2, 2],
        [3, 0, 1, 1, 2, 2, 2, 2],
        [1, 1, 0, 4, 2, 2, 2, 2],
        [1, 1, 4, 0, 2, 2, 2, 2],
        [2, 2, 2, 2, 0, 5, 1, 1],
        [2, 2, 2, 2, 5, 0, 1, 1],
        [2, 2, 2, 2, 1, 1, 0, 6],
        [2, 2, 2, 2, 1, 1, 6, 0],
    ])
    subjects = [1]
    study = [[
        'absence', 'hollow', 'pupil', 'fountain', 'piano', 'pillow', 'cat',
        'tree'
    ]]
    recall = [[
        'fountain', 'hollow', 'absence', 'cat', 'piano', 'pupil', 'fountain'
    ]]
    item_index = ([[0, 1, 2, 3, 4, 5, 6, 7]], [[3, 1, 0, 6, 4, 2, 3]])
    raw = fr.table_from_lists(subjects, study, recall, item_index=item_index)
    data = fr.merge_free_recall(raw, list_keys=['item_index'])
    stat = fr.distance_rank_window(data, 'item_index', distances, [-1, 0, 1])
    expected = np.array([[0.875, 0.875, 0.375], [0, 1, 1], [0, 0, 0]])
    np.testing.assert_allclose(np.mean(expected, 0), stat['rank'].to_numpy())
コード例 #2
0
def test_distance_rank_shifted():
    """Test shifted distance rank analysis."""
    distances = np.array([
        [0, 1, 1, 1, 2, 2, 2, 2],
        [1, 0, 1, 4, 2, 2, 2, 2],
        [1, 1, 0, 1, 2, 2, 2, 2],
        [1, 4, 1, 0, 2, 2, 2, 2],
        [2, 2, 2, 2, 0, 3, 3, 3],
        [2, 2, 2, 2, 3, 0, 3, 3],
        [2, 2, 2, 2, 3, 3, 0, 3],
        [2, 2, 2, 2, 3, 3, 3, 0],
    ])
    subjects = [1]
    study = [[
        'absence', 'hollow', 'pupil', 'fountain', 'piano', 'pillow', 'cat',
        'tree'
    ]]
    recall = [[
        'piano', 'fountain', 'hollow', 'tree', 'fountain', 'absence', 'cat',
        'pupil'
    ]]
    item_index = ([[0, 1, 2, 3, 4, 5, 6, 7]], [[4, 3, 1, 7, 3, 0, 6, 2]])
    raw = fr.table_from_lists(subjects, study, recall, item_index=item_index)
    data = fr.merge_free_recall(raw, list_keys=['item_index'])
    stat = fr.distance_rank_shifted(data, 'item_index', distances, 2)

    expected = np.array([0.683333, 0.416667])
    np.testing.assert_allclose(expected,
                               stat['rank'].to_numpy(),
                               atol=0.000001)
コード例 #3
0
def test_category_clustering():
    """Test category clustering statistics."""
    subject = [1] * 2

    # category of study and list items (two cases from category
    # clustering tests)
    study_category = [list('abcd') * 4] * 2
    recall_str = ['aaabbbcccddd', 'aabbcdcd']
    recall_category = [list(s) for s in recall_str]

    # unique item codes (needed for merging study and recall events;
    # not actually needed for the stats)
    study_item = [[i for i in range(len(c))] for c in study_category]
    recall_item = [[0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11],
                   [0, 4, 1, 5, 2, 3, 6, 7]]

    # create merged free recall data
    raw = fr.table_from_lists(subject,
                              study_item,
                              recall_item,
                              category=(study_category, recall_category))
    data = fr.merge_free_recall(raw, list_keys=['category'])

    # test ARC and LBC stats
    stats = fr.category_clustering(data, 'category')
    np.testing.assert_allclose(stats.loc[1, 'arc'], 0.667, rtol=0.011)
    np.testing.assert_allclose(stats.loc[1, 'lbc'], 3.2, rtol=0.011)
コード例 #4
0
def test_lag_crp_compound():
    """Test compound lag-CRP analysis."""
    subjects = [1, 1]
    study = [['absence', 'hollow', 'pupil', 'fountain'],
             ['tree', 'cat', 'house', 'dog']]
    recall = [['fountain', 'hollow', 'absence'],
              ['mouse', 'cat', 'tree', 'house', 'dog']]
    raw = fr.table_from_lists(subjects, study, recall)
    data = fr.merge_free_recall(raw)
    crp = fr.lag_crp_compound(data)
    # -2, -1
    # NaN, -1, +2, +1
    actual = np.hstack([
        [0, 0, 0, 0, 0, 0, 0],
        [0, 0, 1, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 1, 0],
        [0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 1, 0, 0],
        [0, 0, 0, 0, 0, 0, 0],
    ])
    possible = np.hstack([
        [0, 0, 0, 0, 0, 0, 0],
        [0, 0, 1, 0, 1, 0, 0],
        [0, 0, 0, 0, 0, 1, 1],
        [0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 1, 0, 0],
        [0, 0, 0, 0, 0, 0, 0],
    ])
    np.testing.assert_array_equal(actual, crp['actual'].to_numpy())
    np.testing.assert_array_equal(possible, crp['possible'].to_numpy())
コード例 #5
0
def test_pli_list_lag():
    """Test proportion of list lags for prior-list intrusions."""
    subjects = [1, 1, 1, 1, 2, 2, 2, 2]
    study = [
        ['tree', 'cat'],
        ['absence', 'hollow'],
        ['fountain', 'piano'],
        ['pillow', 'pupil'],
        ['tree', 'cat'],
        ['absence', 'hollow'],
        ['fountain', 'piano'],
        ['pillow', 'pupil'],
    ]
    recall = [
        ['tree', 'cat'],
        ['hollow', 'absence'],
        ['fountain', 'hollow'],
        ['absence', 'piano', 'cat'],
        ['tree', 'cat'],
        ['absence', 'hollow'],
        ['fountain', 'piano'],
        ['pillow', 'pupil'],
    ]
    raw = fr.table_from_lists(subjects, study, recall)
    data = fr.merge_free_recall(raw)

    # max lag 1 (exclude just the first list)
    stat = fr.pli_list_lag(data, max_lag=1)
    np.testing.assert_array_equal(stat['count'].to_numpy(), np.array([2, 0]))
    np.testing.assert_array_equal(stat['per_list'].to_numpy(),
                                  np.array([2 / 3, 0]))
    np.testing.assert_array_equal(stat['prob'].to_numpy(),
                                  np.array([0.5, np.nan]))

    # max lag 2 (exclude first two lists)
    stat = fr.pli_list_lag(data, max_lag=2)
    np.testing.assert_array_equal(stat['count'].to_numpy(),
                                  np.array([2, 1, 0, 0]))
    np.testing.assert_array_equal(stat['per_list'].to_numpy(),
                                  np.array([1, 0.5, 0, 0]))
    np.testing.assert_array_equal(stat['prob'].to_numpy(),
                                  np.array([0.5, 0.25, np.nan, np.nan]))

    # max lag 3 (exclude first three lists)
    stat = fr.pli_list_lag(data, max_lag=3)
    np.testing.assert_array_equal(stat['count'].to_numpy(),
                                  np.array([1, 1, 1, 0, 0, 0]))
    np.testing.assert_array_equal(stat['per_list'].to_numpy(),
                                  np.array([1, 1, 1, 0, 0, 0]))
    np.testing.assert_array_equal(
        stat['prob'].to_numpy(),
        np.array([1 / 3, 1 / 3, 1 / 3, np.nan, np.nan, np.nan]))
コード例 #6
0
def test_table_from_lists():
    """Test creating a data table from lists."""
    subjects = [1, 1, 2, 2]
    lists = [1, 2, 3, 4]
    study = [
        ['absence', 'hollow', 'pupil'],
        ['fountain', 'piano', 'pillow'],
        ['fountain', 'piano', 'pillow'],
        ['absence', 'hollow', 'pupil'],
    ]
    recall = [
        ['hollow', 'pupil', 'empty'],
        ['fountain', 'piano', 'fountain'],
        ['pillow', 'piano'],
        ['pupil'],
    ]
    category = (
        [[1, 1, 2], [2, 2, 2], [1, 1, 2], [2, 2, 2]],
        [[1, 2, 1], [2, 2, 2], [2, 2], [2]],
    )
    task = ([[1, 2, 1], [2, 1, 2], [2, 1, 2], [1, 2, 1]], None)

    # explicit labeling of list number
    data = fr.table_from_lists(subjects,
                               study,
                               recall,
                               lists=lists,
                               category=category,
                               task=task)

    # subject, list, and trial_type labels
    np.testing.assert_array_equal(data['subject'].to_numpy(),
                                  np.repeat([1, 2], [12, 9]))
    np.testing.assert_array_equal(data['list'].to_numpy(),
                                  np.repeat([1, 2, 3, 4], [6, 6, 5, 4]))
    np.testing.assert_array_equal(
        data['trial_type'].to_numpy(),
        np.repeat(np.tile(['study', 'recall'], 4), [3, 3, 3, 3, 3, 2, 3, 1]),
    )

    # position
    n = [len(items) for seqs in zip(study, recall) for items in seqs]
    position = np.array([i for j in n for i in range(1, j + 1)])
    np.testing.assert_array_equal(data['position'].to_numpy(), position)

    # items
    items = [
        item for phase in zip(study, recall) for items in phase
        for item in items
    ]
    np.testing.assert_array_equal(data['item'].to_numpy(), np.array(items))

    # category
    category = [
        cat for phase in zip(*category) for cats in phase for cat in cats
    ]
    np.testing.assert_array_equal(data['category'].to_numpy(), category)

    # task
    task_recall = [np.tile(np.nan, n) for n in [3, 3, 2, 1]]
    task = np.hstack(
        [t for t_list in zip(task[0], task_recall) for t in t_list])
    np.testing.assert_array_equal(data['task'].to_numpy(), task)

    # implicit labeling of list number
    data = fr.table_from_lists(subjects, study, recall)
    np.testing.assert_array_equal(data['list'].to_numpy(),
                                  np.repeat([1, 2, 1, 2], [6, 6, 5, 4]))