def process_household(household, bounds): """ Processes each household time series, first by regularizing step of the raw series to the fifteen minutes time series, then by aggregating fifteen minutes series to hourly, daily, monthly. """ print "Processing household: %s"%(household.alt_codes.all()[0],) for variable in (VAR_PERIOD, VAR_ENERGY_PERIOD): raw_series_db = household.timeseries.filter(time_step__isnull=True, variable__id = {VAR_PERIOD: VAR_CUMULATIVE, VAR_ENERGY_PERIOD: VAR_ENERGY_CUMULATIVE}[variable])[:1] if not raw_series_db: continue raw_series_db = raw_series_db[0] fifteen_min_series_db = household.timeseries.get(time_step__id= TSTEP_FIFTEEN_MINUTES, variable__id=variable) s1, e1 = timeseries_bounding_dates_from_db(db.connection, raw_series_db.id) s2, e2 = timeseries_bounding_dates_from_db(db.connection, fifteen_min_series_db.id) # if e2 and (e1-e2).seconds<15*60: # return fifteen_min_series = regularize_raw_series(raw_series_db, fifteen_min_series_db, s1,e1,s2,e2) if fifteen_min_series.bounding_dates(): bounds[variable]['fifteen_start'] = min( bounds[variable]['fifteen_start'], fifteen_min_series.bounding_dates()[0]) bounds[variable]['fifteen_end'] = max( bounds[variable]['fifteen_end'], fifteen_min_series.bounding_dates()[1]) result = fifteen_min_series monthly_series = None for time_step_id in (TSTEP_HOURLY, TSTEP_DAILY, TSTEP_MONTHLY): if not result: break result = aggregate_household_series(bounds, household, result, time_step_id, variable) if time_step_id == TSTEP_MONTHLY: monthly_series = result if not monthly_series: return # Cost calculation only if monthly_series present cost_timeseries_db = household.timeseries.get(time_step__id = TSTEP_MONTHLY, variable__id = {VAR_PERIOD: VAR_COST, VAR_ENERGY_PERIOD: VAR_ENERGY_COST }[variable]) cost_timeseries = calculate_cost_timeseries(monthly_series, rate = { VAR_PERIOD: CUBIC_METER_FLAT_RATE, VAR_ENERGY_PERIOD: KWH_FLAT_RATE}[variable]) cost_timeseries.id = cost_timeseries_db.id cost_timeseries.write_to_db(db = db.connection, commit=True)
def MultiTimeseriesProcessDb(method, timeseries_arg, out_timeseries_id, db, read_tstep_func, transaction=None, commit=True, options={}): out_timeseries = Timeseries(id = out_timeseries_id) opts = copy.deepcopy(options) if 'append_only' in opts and opts['append_only']: bounds = timeseries_bounding_dates_from_db(db, id = out_timeseries_id) opts['start_date'] = bounds[1] if bounds else None; opts['interval_exclusive'] = True tseries_arg={} for key in timeseries_arg: ts = Timeseries(id=timeseries_arg[key]) if ('append_only' in opts and opts['append_only']) \ and opts['start_date'] is not None: ts.read_from_db(db, bottom_only=True) if ts.bounding_dates()[0]>opts['start_date']: ts.read_from_db(db) else: ts.read_from_db(db) ts.time_step = read_tstep_func(ts.id) tseries_arg[key] = ts MultiTimeseriesProcess(method, tseries_arg, out_timeseries, opts) if 'append_only' in opts and opts['append_only']: out_timeseries.append_to_db(db=db, transaction=transaction, commit=commit) else: out_timeseries.write_to_db(db=db, transaction=transaction, commit=commit)
def handle(self, *args, **options): try: prefix = args[0] except IndexError: prefix = "" try: if prefix: users = User.objects.filter(username__icontains=prefix) else: users = User.objects.all() out = [] print "output for {x} users".format(x=len(users)) for user in users: print "looking for user %s" % user.username try: household = Household.objects.get(user=user) for variable in (VAR_PERIOD, VAR_ENERGY_PERIOD): if variable == VAR_PERIOD: _type = "WATER" else: _type = "ENERGY" raw_series_db = household.timeseries.filter( time_step__isnull=True, variable__id={ VAR_PERIOD: VAR_CUMULATIVE, VAR_ENERGY_PERIOD: VAR_ENERGY_CUMULATIVE }[variable])[:1] if not raw_series_db: continue raw_series_db = raw_series_db[0] s1, e1 = timeseries_bounding_dates_from_db( db.connection, raw_series_db.id) if s1: start = s1.strftime("%Y-%m-%d %H:%M:%S") else: start = "" if e1: end = e1.strftime("%Y-%m-%d %H:%M:%S") else: end = "" out.append([user.username, start, end, _type]) except Exception as e: print (repr(e)) continue import time _outfile = "%s_bounding_dates.csv" % prefix _path = "data/" with open(path.join(_path, _outfile), 'w') as of: a = csv.writer(of, delimiter=',', quotechar='"', quoting=csv.QUOTE_ALL) a.writerows(out) except Exception as e: raise CommandError(repr(e))
def parse_and_save_timeseries(device_id, timeseries_id): """ Reads a RAW timeseries from REST API and saves in our local database using the timeseries_id. ``device_id`` will be the ``identifier`` used in other functions, usualy is the customerID==deviceID """ s, e = timeseries_bounding_dates_from_db(db.connection, timeseries_id) if s or e: print 'Raw timeseries id=%s has already data, skipping...' % ( timeseries_id, ) return timeseries = TSeries() timeseries.id = timeseries_id for timestamp, value in ibm_restapi.get_raw_timeseries(device_id): timeseries[timestamp] = value timeseries.write_to_db(db=db.connection, transaction=transaction, commit=False)
def create_objects(dma, household_identifier, series, force=False): """ When a household is fully parsed then this command is called to create database objects thus: user (household owner), household, database time series placeholders (for raw data and for processed data), to write actual time series data in database and finally to estimate the household occupancy. """ print "Processing household %s, user username will be %s as well"%( household_identifier, household_identifier) # Create user (household owner), household, database series placeholders user = create_user(household_identifier) household=create_household(household_identifier, user, zone=dma.id) db_series = create_raw_timeseries(household) create_processed_timeseries(household) timeseries_data = {} # Now we will create timeseries.Timeseries() and we will add # parsed values for variable in db_series: if variable not in ('WaterCold', 'Electricity'): continue s, e = timeseries_bounding_dates_from_db(db.connection, db_series[variable].id) if not force and (s or e): print 'Raw timeseries id=%s has already data, skipping...'%( db_series[variable].id,) continue timeseries = TSeries() timeseries.id = db_series[variable].id total = 0.0 for timestamp, value in series[variable]: if not math.isnan(value): total += value timeseries[timestamp] = total else: timeseries[timestamp] = float('NaN') timeseries_data[variable] = timeseries timeseries.write_to_db(db=db.connection, transaction=transaction, commit=False) if 'WaterCold' in timeseries_data: calc_occupancy(timeseries_data['WaterCold'], household)
def parse_and_save_timeseries(device_id, timeseries_id): """ Reads a RAW timeseries from REST API and saves in our local database using the timeseries_id. ``device_id`` will be the ``identifier`` used in other functions, usualy is the customerID==deviceID """ s, e = timeseries_bounding_dates_from_db(db.connection, timeseries_id) if s or e: print 'Raw timeseries id=%s has already data, skipping...'%( timeseries_id,) return timeseries = TSeries() timeseries.id = timeseries_id for timestamp, value in ibm_restapi.get_raw_timeseries(device_id): timeseries[timestamp] = value timeseries.write_to_db(db=db.connection, transaction=transaction, commit=False)
def InterpolateDbTimeseries(source_id, dest_id, curve_type, curve_data, db, data_columns=(0,1), logarithmic=False, offset=0, append_only=False, transaction=None, commit=True): if append_only: bounds = timeseries_bounding_dates_from_db(db, id = dest_id) start_date = bounds[1] if bounds else None; ts = Timeseries(id=source_id) if append_only and start_date is not None: ts.read_from_db(db, bottom_only=True) if ts.bounding_dates()[0]>start_date: ts.read_from_db(db) while ts.bounding_dates()[0]<=start_date: del(ts[ts.bounding_dates()[0]]) if len(ts)==0: return else: ts.read_from_db(db) curve_list = TransientCurveList() if curve_type=='SingleCurve': curve_list.add(logarithmic=logarithmic, offset=CurvePoint(offset, 0)) super(TransientCurve, curve_list[0]).read_fp(StringIO(curve_data), data_columns) elif curve_type=='StageDischargeMulti': curve_list.read_fp(StringIO(curve_data)) else: assert(False) out_timeseries = curve_list.interpolate_ts(ts) out_timeseries.id = dest_id if append_only: out_timeseries.append_to_db(db=db, transaction=transaction, commit=commit) else: out_timeseries.write_to_db(db=db, transaction=transaction, commit=commit)
def AggregateDbTimeseries(source_id, dest_id, db, read_tstep_func, transaction=None, commit=True, missing_allowed=0.0, missing_flag='MISSING', append_only=False, last_incomplete=False, all_incomplete=False): source = Timeseries(id=source_id, time_step=read_tstep_func(source_id)) dest_step = read_tstep_func(dest_id) if append_only: bounds = timeseries_bounding_dates_from_db(db = db, id = dest_id) end_date = bounds[1] if bounds else None source.read_from_db(db) dest = source.aggregate(target_step=dest_step, missing_allowed=missing_allowed, missing_flag=missing_flag, last_incomplete=last_incomplete, all_incomplete=all_incomplete)[0] dest.id = dest_id if append_only: d=dest.bounding_dates() while (d is not None) and (end_date is not None) and d[0]<=end_date: del dest[d[0]] d=dest.bounding_dates() dest.append_to_db(db=db, transaction=transaction, commit=commit) else: dest.write_to_db(db=db, transaction=transaction, commit=commit)
def process_household(household): for variable in (VAR_PERIOD, VAR_ENERGY_PERIOD): raw_series_db = household \ .timeseries \ .filter(time_step__isnull=True, variable__id={ VAR_PERIOD: VAR_CUMULATIVE, VAR_ENERGY_PERIOD: VAR_ENERGY_CUMULATIVE }[variable])[:1] if not raw_series_db: continue raw_series_db = raw_series_db[0] fifteen_min_series_db = household \ .timeseries.get(time_step__id=TSTEP_FIFTEEN_MINUTES, variable__id=variable) s1, e1 = timeseries_bounding_dates_from_db(db.connection, raw_series_db.id) s2, e2 = timeseries_bounding_dates_from_db(db.connection, fifteen_min_series_db.id) # if e2 and (e1-e2).seconds<15*60: # return #log.info("Now regularizing %s with id %s for s1=%s and e1=%s" # % (raw_series_db, raw_series_db.id, s1, e1)) fifteen_min_series = regularize(raw_series_db, fifteen_min_series_db, s1, e1) if fifteen_min_series and fifteen_min_series.bounding_dates(): bounds[variable]['fifteen_start'] = min( bounds[variable]['fifteen_start'], fifteen_min_series.bounding_dates()[0]) bounds[variable]['fifteen_end'] = max( bounds[variable]['fifteen_end'], fifteen_min_series.bounding_dates()[1]) result = fifteen_min_series monthly_series = None # Stefanos wants to aggregate using previous results # Why? The problem is that Monthly series is not inserted. # Was this on purpose? for time_step_id in (TSTEP_HOURLY, TSTEP_DAILY, TSTEP_MONTHLY): result = aggregate(household, result, time_step_id, variable) if time_step_id == TSTEP_MONTHLY: monthly_series = result if not monthly_series: return # Cost calculation only if monthly_series present try: cost_timeseries_db = household \ .timeseries.get(time_step__id=TSTEP_MONTHLY, variable__id={ VAR_PERIOD: VAR_COST, VAR_ENERGY_PERIOD: VAR_ENERGY_COST }[variable]) cost_timeseries = calculate_cost(monthly_series, rate={ VAR_PERIOD: CUBIC_METER_FLAT_RATE, VAR_ENERGY_PERIOD: KWH_FLAT_RATE }[variable]) cost_timeseries.id = cost_timeseries_db.id cost_timeseries.write_to_db(db=db.connection, commit=True) except Exception as e: log.info("Error in monthly calculation %s. Skipping!" % repr(e)) continue
def create_objects(data, usernames, force, z_names, z_dict): """ :param data: meter_id -> consumption_type -> [timestamp, volume] :param force: True to overwrite :return: True for success """ households = [] # Create user (household owner), household, database series placeholders hh_ids = sorted(data.keys()) found = False for hh_id in hh_ids: username = usernames[hh_id] if username == "PT94993": pass try: zone_name = z_dict[username] except KeyError: zone_name = z_names[0] zone = DMA.objects.get(name=zone_name) user, created = create_user(username, hh_id) household, found = create_household(hh_id, user, zone.id) households.append(household) db_series = create_raw_timeseries(household) create_processed_timeseries(household) timeseries_data = {} # Now we will create timeseries.Timeseries() and we will add # parsed values for variable in db_series: if variable not in ('WaterCold', 'Electricity'): continue exists = False s, e = timeseries_bounding_dates_from_db(db.connection, db_series[variable].id) latest_ts = e ts_id = db_series[variable].id # checking to see if timeseries records already exist in order # to append # d = read_timeseries_tail_from_db(db.connection, ts_id) total = 0.0 # if s or e: # exists = True # timeseries = TSeries(ts_id) # timeseries.read_from_db(db.connection) # else: # timeseries = TSeries() # timeseries.id = ts_id _dict = data[hh_id] arr = _dict[variable] series = arr if not series: continue earlier = [] if (not latest_ts) or (latest_ts < series[0][0]): # append timeseries = TSeries() timeseries.id = ts_id try: tail = read_timeseries_tail_from_db(db.connection, ts_id) total = float(tail[1]) # keep up from last value except Exception as e: log.debug(repr(e)) total = 0 for timestamp, value in series: if (not latest_ts) or (timestamp > latest_ts): if not isnan(value): total += value timeseries[timestamp] = total else: timeseries[timestamp] = float('NaN') elif timestamp < latest_ts: earlier.append((timestamp, value)) timeseries.append_to_db(db=db.connection, transaction=transaction, commit=True) elif latest_ts >= series[0][0]: if not force: # ignore continue else: # insert for timestamp, value in series: if timestamp < latest_ts: earlier.append((timestamp, value)) if earlier and ("GR" in username or "GBA" in username): # insert (only for athens) # print "appending %s items for %s" % (len(earlier), username) if variable == "WaterCold": ts15 = household \ .timeseries.get(time_step__id=TSTEP_FIFTEEN_MINUTES, variable__id=VAR_PERIOD) series15 = TSeries(id=ts15.id) elif variable == "Electricity": ts15 = household \ .timeseries.get(time_step__id=TSTEP_FIFTEEN_MINUTES, variable__id=VAR_ENERGY_PERIOD) series15 = TSeries(id=ts15.id) series15.read_from_db(db.connection) for ts, value in earlier: series15[ts] = value series15.write_to_db(db=db.connection, transaction=transaction, commit=True) raw_ts = TSeries(ts_id) # read existing ts raw data raw_ts.read_from_db(db.connection) total = get_consumption_totals(household, earlier[0][0], variable) init = total for timestamp, value in earlier: if not isnan(value): total += value raw_ts[timestamp] = total else: raw_ts[timestamp] = float('NaN') # correct later values, too diff = total - init all_ts = sorted(raw_ts.keys()) for ts in all_ts: if ts <= timestamp: continue curr = raw_ts[ts] raw_ts[ts] = curr + diff raw_ts.write_to_db(db=db.connection, transaction=transaction, commit=True) if 'WaterCold' in timeseries_data and not found: # only for new HH calc_occupancy(timeseries_data['WaterCold'], household) return households
def process_household(household, bounds): """ Processes each household time series, first by regularizing step of the raw series to the fifteen minutes time series, then by aggregating fifteen minutes series to hourly, daily, monthly. """ print "Processing household: %s" % (household.alt_codes.all()[0], ) for variable in (VAR_PERIOD, VAR_ENERGY_PERIOD): raw_series_db = household.timeseries.filter(time_step__isnull=True, variable__id={ VAR_PERIOD: VAR_CUMULATIVE, VAR_ENERGY_PERIOD: VAR_ENERGY_CUMULATIVE }[variable])[:1] if not raw_series_db: continue raw_series_db = raw_series_db[0] fifteen_min_series_db = household.timeseries.get( time_step__id=TSTEP_FIFTEEN_MINUTES, variable__id=variable) s1, e1 = timeseries_bounding_dates_from_db(db.connection, raw_series_db.id) s2, e2 = timeseries_bounding_dates_from_db(db.connection, fifteen_min_series_db.id) # if e2 and (e1-e2).seconds<15*60: # return fifteen_min_series = regularize_raw_series(raw_series_db, fifteen_min_series_db, s1, e1, s2, e2) if fifteen_min_series.bounding_dates(): bounds[variable]['fifteen_start'] = min( bounds[variable]['fifteen_start'], fifteen_min_series.bounding_dates()[0]) bounds[variable]['fifteen_end'] = max( bounds[variable]['fifteen_end'], fifteen_min_series.bounding_dates()[1]) result = fifteen_min_series monthly_series = None for time_step_id in (TSTEP_HOURLY, TSTEP_DAILY, TSTEP_MONTHLY): if not result: break result = aggregate_household_series(bounds, household, result, time_step_id, variable) if time_step_id == TSTEP_MONTHLY: monthly_series = result if not monthly_series: return # Cost calculation only if monthly_series present cost_timeseries_db = household.timeseries.get( time_step__id=TSTEP_MONTHLY, variable__id={ VAR_PERIOD: VAR_COST, VAR_ENERGY_PERIOD: VAR_ENERGY_COST }[variable]) cost_timeseries = calculate_cost_timeseries(monthly_series, rate={ VAR_PERIOD: CUBIC_METER_FLAT_RATE, VAR_ENERGY_PERIOD: KWH_FLAT_RATE }[variable]) cost_timeseries.id = cost_timeseries_db.id cost_timeseries.write_to_db(db=db.connection, commit=True)
def usage_data(request, ctr_code): user = request.user if user.is_superuser: users = User.objects.filter(username__startswith=ctr_code) u_data = {} user_pages = {} for user in users: arr = [user.username] try: household = Household.objects.get(user=user) except Household.DoesNotExist: continue for variable in (VAR_PERIOD, VAR_ENERGY_PERIOD): if variable == VAR_PERIOD: _type = "WATER" else: _type = "ENERGY" raw_series_db = household.timeseries.filter( time_step__isnull=True, variable__id={ VAR_PERIOD: VAR_CUMULATIVE, VAR_ENERGY_PERIOD: VAR_ENERGY_CUMULATIVE }[variable])[:1] if not raw_series_db: continue raw_series_db = raw_series_db[0] s1, e1 = timeseries_bounding_dates_from_db( db.connection, raw_series_db.id) if s1: start = s1.strftime("%Y-%m-%d %H:%M") else: start = "" if e1: end = e1.strftime("%Y-%m-%d %H:%M") else: end = "" arr.extend([start, end]) ud = UsageData.objects.filter(user=user) if ud: ets = ud[0].enter_ts lts = ud[0].exit_ts arr.append(ets.strftime("%Y-%m-%d %H:%M")) arr.append(lts.strftime("%Y-%m-%d %H:%M")) # duration arr.append(int(time.mktime(lts.timetuple()) - time.mktime(ets.timetuple())) / 60) else: arr.extend([0, 0, 0]) upvs = UserPageView.objects.filter(user=user).order_by('-added') if upvs: arr.append(upvs[0].added) else: arr.append("-") arr.append(len(ud)) u_data[user.id] = arr pages = {} for upv in upvs: page = upv.page count = pages.get(page, 0) count += 1 pages[page] = count keys = pages.keys() page_tuples = [] for k in keys: page_tuples.append((k, pages[k])) user_pages[user.id] = page_tuples data = { "users": users, "data": u_data, "pages": user_pages, } variables = RequestContext(request, data) return render_to_response("_usage_data.html", variables) else: return HttpResponseRedirect(reverse('dashboard'))