# Open the image frame frame = Frame.from_file(image_path) # Determine the preparation name if frame.filter is not None: prep_name = str(frame.filter) else: prep_name = image_name # Set the row entries names_column.append(image_name) paths_column.append(image_path) prep_names_column.append(prep_name) # Create the table data = [names_column, paths_column, prep_names_column] table = tables.new(data, names) # Check whether the preparation directory exists prep_path = fs.join(config.path, "prep") if not fs.is_directory(prep_path): fs.create_directory(prep_path) # Save the table prep_info_table_path = fs.join(prep_path, "prep_info.dat") tables.write(table, prep_info_table_path, format="ascii.ecsv") # ----------------------------------------------------------------- # Create a PreparationInitializer instance initializer = PreparationInitializer(config) # Run the data initializer
name_column = [] par_a_column = [] par_b_column = [] for ind in ga.new_population: # Give the individual a unique name name = time.unique_name(precision="micro") name_column.append(name) par_a_column.append(ind.genomeList[0]) par_b_column.append(ind.genomeList[1]) # Create the parameters table data = [name_column, par_a_column, par_b_column] names = ["Unique name", "Parameter a", "Parameter b"] new_parameters_table = tables.new(data, names) # ----------------------------------------------------------------- # Save the new parameters table tables.write(new_parameters_table, new_parameters_path, format="ascii.ecsv") # Dump the GA ga.saveto(new_path) # ----------------------------------------------------------------- # Save the state of the random generator new_random_path = fs.join(new_generation_path, "rndstate.pickle") save_state(new_random_path)
score = chi_squared_function([parameter_a_tab, parameter_b_tab]) # Keep track of index of lowest score if lowest_score is None or score < lowest_score: lowest_score = score index_lowest = index # Add the score to the list name = table["Unique name"][index] names.append(name) scores.append(score) # Create the chi squared table data = [names, scores] names = ["Unique name", "Chi-squared"] chi_squared_table = tables.new(data, names) # Determine the path to the chi squared table chi_squared_path = fs.join(generation_path, "chi_squared.dat") # Write the chi squared table tables.write(chi_squared_table, chi_squared_path, format="ascii.ecsv") # ----------------------------------------------------------------- best_parameter_a = table["Parameter a"][index_lowest] best_parameter_b = table["Parameter b"][index_lowest] best_path = fs.join(generation_path, "best.dat") with open(best_path, 'w') as best_file: