コード例 #1
0
ファイル: pts_images.py プロジェクト: ntf229/RT_fit
def makeConvolvedRGBImages(simulation, contributions, name="", *, fileType="total", decades=3,
                            fmax=None, fmin=None, outDirPath=None):
    # get the (instrument, output file path) tuples to be handled
    instr_paths = sm.instrumentOutFilePaths(simulation, fileType+".fits")
    if len(instr_paths) > 0:
        name = "" if not name else "_" + name
        sbunit = sm.unit("MJy/sr")
        # construct an image object with integrated color channels for each output file
        # and keep track of the largest surface brightness value (in MJy/sr) in each of the images
        images = []
        fmaxes = []
        for instrument, filepath in instr_paths:
            logging.info("Convolving for RGB image {}{}".format(filepath.stem, name))
            # get the data cube in its intrinsic units
            cube = sm.loadFits(filepath)
            # initialize an RGB frame
            dataRGB = np.zeros( (cube.shape[0], cube.shape[1], 3) ) << sbunit
            # add color for each filter
            for band,w0,w1,w2 in contributions:
                # convolve and convert to per frequency units
                data = band.convolve(instrument.wavelengths(), cube, flavor=sbunit, numWavelengths=10)
                dataRGB[:,:,0] += w0*data
                dataRGB[:,:,1] += w1*data
                dataRGB[:,:,2] += w2*data
            # construct the image object
            images.append(vis.RGBImage(dataRGB.value))
            fmaxes.append(dataRGB.max())
        # determine the appropriate pixel range for all output images
        fmax = max(fmaxes) if fmax is None else fmax << sbunit
        fmin = fmax/10**decades if fmin is None else fmin << sbunit
        # create an RGB file for each output file
        for (instrument, filepath), image in zip(instr_paths,images):
            image.setRange(fmin.value, fmax.value)
            image.applyLog()
            image.applyCurve()
            # determine output file path
            saveFilePath = ut.savePath(filepath.with_name(filepath.stem+name+".png"), ".png", outDirPath=outDirPath)
            image.saveTo(saveFilePath)
            logging.info("Created convolved RGB image file {}".format(saveFilePath))
        # return the surface brightness range used for these images
        return fmin,fmax
コード例 #2
0
def plotDefaultDustTemperatureCuts(simulation,
                                   *,
                                   outDirPath=None,
                                   outFileName=None,
                                   outFilePath=None,
                                   figSize=None,
                                   interactive=None):

    # find the relevant probe
    probes = [
        probe for probe in simulation.probes()
        if probe.type() == "DefaultDustTemperatureCutsProbe"
    ]
    if len(probes) != 1:
        return
    probe = probes[0]

    # load the temperature cuts and the range of the x and y axes
    # (there can be one to three cuts depending on symmetries)
    paths = probe.outFilePaths("dust_T_*.fits")
    numcuts = len(paths)
    if not numcuts in (1, 2, 3):
        return
    cuts = [path.stem.split("_")[-1] for path in paths]
    frames = [sm.loadFits(path) for path in paths]
    grids = [sm.getFitsAxes(path) for path in paths]

    # determine the maximum temperature value to display
    Tmax = max([frame.max() for frame in frames])

    # setup the figure depending on the number of cuts
    if figSize is None: figSize = (8 * numcuts, 6)
    fig, axes = plt.subplots(ncols=numcuts, nrows=1, figsize=figSize)
    if numcuts == 1: axes = [axes]

    # plot the cuts and set axis details for each
    for ax, cut, frame, (xgrid, ygrid) in zip(axes, cuts, frames, grids):
        extent = (xgrid[0].value, xgrid[-1].value, ygrid[0].value,
                  ygrid[-1].value)
        im = ax.imshow(frame.value.T,
                       vmin=0,
                       vmax=Tmax.value,
                       cmap='gnuplot',
                       extent=extent,
                       aspect='auto',
                       interpolation='bicubic',
                       origin='lower')
        ax.set_xlim(xgrid[0].value, xgrid[-1].value)
        ax.set_ylim(ygrid[0].value, ygrid[-1].value)
        ax.set_xlabel(cut[0] + sm.latexForUnit(xgrid.unit), fontsize='large')
        ax.set_ylabel(cut[-1] + sm.latexForUnit(ygrid.unit), fontsize='large')
        ax.set_ylabel(cut[-1] + sm.latexForUnit(ygrid.unit), fontsize='large')

    # add a color bar
    fig.colorbar(im, ax=axes).ax.set_ylabel("T" + sm.latexForUnit(frame.unit),
                                            fontsize='large')

    # if not in interactive mode, save the figure; otherwise leave it open
    if not ut.interactive(interactive):
        saveFilePath = ut.savePath(simulation.outFilePath(
            "{}_dust_T.pdf".format(probe.name())), (".pdf", ".png"),
                                   outDirPath=outDirPath,
                                   outFileName=outFileName,
                                   outFilePath=outFilePath)
        plt.savefig(saveFilePath, bbox_inches='tight', pad_inches=0.25)
        plt.close()
        logging.info("Created {}".format(saveFilePath))
コード例 #3
0
def plotDefaultMediaDensityCuts(simulation,
                                decades=5,
                                *,
                                outDirPath=None,
                                figSize=(18, 6),
                                interactive=None):

    # find the relevant probe
    probes = [
        probe for probe in simulation.probes()
        if probe.type() == "DefaultMediaDensityCutsProbe"
    ]
    if len(probes) != 1:
        return
    probe = probes[0]

    for medium in ("dust", "elec", "gas"):
        for cut in ("xy", "xz", "yz"):

            # load the theoretical and gridded cuts for the requested medium and cut plane
            tPaths = probe.outFilePaths("{}_t_{}.fits".format(medium, cut))
            gPaths = probe.outFilePaths("{}_g_{}.fits".format(medium, cut))
            if len(tPaths) == 1 and len(gPaths) == 1:
                tFrame = sm.loadFits(tPaths[0])
                gFrame = sm.loadFits(gPaths[0])

                # determine the range of the x and y axes
                xgrid, ygrid = sm.getFitsAxes(tPaths[0])

                # determine the range of density values to display and clip the data arrays
                vmax = max(tFrame.max(), gFrame.max())
                vmin = vmax / 10**decades
                tFrame[tFrame < vmin] = vmin
                gFrame[gFrame < vmin] = vmin

                # setup the figure
                fig, (ax1, ax2) = plt.subplots(ncols=2,
                                               nrows=1,
                                               figsize=figSize)

                # plot the cuts and a color bar (logarithmic normalizer crashes if all values are zero)
                if vmax > 0:
                    normalizer = matplotlib.colors.LogNorm(
                        vmin.value, vmax.value)
                else:
                    normalizer = matplotlib.colors.Normalize(
                        vmin.value, vmax.value)
                extent = (xgrid[0].value, xgrid[-1].value, ygrid[0].value,
                          ygrid[-1].value)
                im = ax1.imshow(tFrame.value.T,
                                norm=normalizer,
                                cmap='gnuplot',
                                extent=extent,
                                aspect='auto',
                                interpolation='bicubic',
                                origin='lower')
                fig.colorbar(im, ax=(ax1, ax2)).ax.set_ylabel(
                    "density" + sm.latexForUnit(tFrame.unit), fontsize='large')
                ax2.imshow(gFrame.value.T,
                           norm=normalizer,
                           cmap='gnuplot',
                           extent=extent,
                           aspect='auto',
                           interpolation='bicubic',
                           origin='lower')

                # set axis details
                ax1.set_xlim(xgrid[0].value, xgrid[-1].value)
                ax1.set_ylim(ygrid[0].value, ygrid[-1].value)
                ax2.set_xlim(xgrid[0].value, xgrid[-1].value)
                ax2.set_ylim(ygrid[0].value, ygrid[-1].value)
                ax1.set_xlabel(cut[0] + sm.latexForUnit(xgrid.unit),
                               fontsize='large')
                ax1.set_ylabel(cut[-1] + sm.latexForUnit(ygrid.unit),
                               fontsize='large')
                ax2.set_xlabel(cut[0] + sm.latexForUnit(xgrid.unit),
                               fontsize='large')
                ax2.set_ylabel(cut[-1] + sm.latexForUnit(ygrid.unit),
                               fontsize='large')

                # if not in interactive mode, save the figure; otherwise leave it open
                if not ut.interactive(interactive):
                    defSavePath = simulation.outFilePath("{}_{}_{}.pdf".format(
                        probe.name(), medium, cut))
                    saveFilePath = ut.savePath(defSavePath, (".pdf", ".png"),
                                               outDirPath=outDirPath)
                    plt.savefig(saveFilePath,
                                bbox_inches='tight',
                                pad_inches=0.25)
                    plt.close()
                    logging.info("Created {}".format(saveFilePath))
コード例 #4
0
def makeWavelengthMovie(simulation,
                        *,
                        maxPercentile=100,
                        minPercentile=10,
                        decades=None,
                        renormalize=False,
                        outDirPath=None,
                        outFileName=None,
                        outFilePath=None,
                        rate=7):

    # get the list of instruments and corresponding output file paths
    instrA, sedPaths = zip(*sm.instrumentOutFilePaths(simulation, "sed.dat"))
    instrB, cubPaths = zip(
        *sm.instrumentOutFilePaths(simulation, "total.fits"))
    instrA = instrA[:3]
    instrB = instrB[:3]
    sedPaths = sedPaths[:3]
    cubPaths = cubPaths[:3]
    if len(instrA) < 1 or len(instrA) != len(instrB)  \
                       or any([ a.name() != b.name() for a,b in zip(instrA,instrB) ]):
        return
    instruments = instrA

    # get the wavelength grid for the first instrument (assumed to be the same for all instruments)
    wavelengths = instruments[0].wavelengths()
    if len(wavelengths) < 3:
        return
    nlambda = len(wavelengths)

    # load the data
    logging.info("Creating movie for {} ({} wavelengths and {} instruments)..." \
                 .format(instruments[0].prefix(), nlambda, len(instruments)))
    sedData = [
        sm.loadColumns(sedPath, "total flux")[0] for sedPath in sedPaths
    ]
    cubData = [sm.loadFits(cubPath).value for cubPath in cubPaths]

    # determine the shape (assume that frames in all fits files have the same shape)
    imgShape = cubData[0].shape[:2]
    sedShape = (len(cubData) * imgShape[0], max(imgShape[1] // 2, 300))
    totalShape = (sedShape[0], imgShape[1] + sedShape[1])

    # determine the global surface brightness range
    fmax = max(
        [np.percentile(np.unique(cube), maxPercentile) for cube in cubData])
    if decades is None:
        fmin = min([
            np.percentile(np.unique(cube), minPercentile) for cube in cubData
        ])
    else:
        fmin = fmax / 10**decades

    # determine the global integrated flux range
    Fmax = max([sed.max() for sed in sedData])
    Fmin = Fmax * fmin / fmax

    # open the movie file
    defSaveFilePath = sedPaths[0].with_name(instruments[0].prefix() +
                                            "_wavemovie.mp4")
    saveFilePath = ut.savePath(defSaveFilePath, (".mp4", ),
                               outDirPath=outDirPath,
                               outFileName=outFileName,
                               outFilePath=outFilePath)
    movie = MovieFile(saveFilePath, shape=totalShape, rate=rate)

    # for each wavelength, construct and add a movie frame
    for frame in range(nlambda):
        logging.info("  adding frame " + str(frame + 1) + "/" + str(nlambda) +
                     "...")

        # determine the surface brightness range for this frame, if needed
        if renormalize:
            fmax = max([
                np.percentile(np.unique(cube[:, :, frame]), maxPercentile)
                for cube in cubData
            ])
            if decades is None:
                fmin = min([
                    np.percentile(np.unique(cube[:, :, frame]), minPercentile)
                    for cube in cubData
                ])
            else:
                fmin = fmax / 10**decades

        # assemble the top panel
        image = None
        for cube in cubData:
            im = RGBImage(
                np.dstack((cube[:, :, frame], cube[:, :, frame], cube[:, :,
                                                                      frame])))
            im.setRange(fmin, fmax)
            im.applyLog()
            im.applyColorMap("gnuplot2")
            if image == None: image = im
            else: image.addRight(im)

        # plot the seds in the bottom panel
        dpi = 100
        figure = Figure(dpi=dpi,
                        figsize=(sedShape[0] / dpi, sedShape[1] / dpi),
                        facecolor='w',
                        edgecolor='w')
        canvas = FigureCanvasAgg(figure)
        ax = figure.add_subplot(111)
        colors = ('r', 'g', 'b')
        for sed, instrument, color in zip(sedData, instruments, colors):
            ax.loglog(wavelengths.value,
                      sed.value,
                      color=color,
                      label=instrument.name())
        ax.axvline(wavelengths[frame].value, color='m')
        ax.set_ylabel(
            sm.latexForSpectralFlux(sedData[0]) + sm.latexForUnit(sedData[0]))
        ax.set_ylim(Fmin.value / 1.1, Fmax.value * 1.1)
        ax.legend(loc='lower right', title=sm.latexForWavelength(wavelengths) \
                    + r"$={0:.4g}\,$".format(wavelengths[frame].value)+sm.latexForUnit(wavelengths))
        canvas.draw()
        im = RGBImage(figure)
        image.addBelow(im)

        # add the frame to the movie
        movie.addFrame(image)

    # close the movie file
    movie.close()
    logging.info("Created {}".format(saveFilePath))
コード例 #5
0
ファイル: plotpolarization.py プロジェクト: petercamps/PTS9
def plotPolarization(simulation,
                     *,
                     plotLinMap=True,
                     plotDegMap=False,
                     plotDegAvg=False,
                     plotCirMap=False,
                     wavelength=None,
                     binSize=(7, 7),
                     degreeScale=None,
                     decades=5,
                     outDirPath=None,
                     figSize=(8, 6),
                     interactive=None):

    # loop over all applicable instruments
    for instrument, filepath in sm.instrumentOutFilePaths(
            simulation, "stokesQ.fits"):
        # form the simulation/instrument name
        insname = "{}_{}".format(instrument.prefix(), instrument.name())

        # get the file paths for the frames/data cubes
        filepathI = instrument.outFilePaths("total.fits")[0]
        filepathQ = instrument.outFilePaths("stokesQ.fits")[0]
        filepathU = instrument.outFilePaths("stokesU.fits")[0]
        filepathV = instrument.outFilePaths("stokesV.fits")[0]

        # load datacubes with shape (nx, ny, nlambda)
        Is = sm.loadFits(filepathI)
        Qs = sm.loadFits(filepathQ)
        Us = sm.loadFits(filepathU)
        Vs = sm.loadFits(filepathV)

        # load the axes grids (assuming all files have the same axes)
        xgrid, ygrid, wavegrid = sm.getFitsAxes(filepathI)
        xmin = xgrid[0].value
        xmax = xgrid[-1].value
        ymin = ygrid[0].value
        ymax = ygrid[-1].value
        extent = (xmin, xmax, ymin, ymax)

        # determine binning configuration
        binX = binSize[0]
        orLenX = Is.shape[0]
        dropX = orLenX % binX
        startX = dropX // 2
        binY = binSize[1]
        orLenY = Is.shape[1]
        dropY = orLenY % binY
        startY = dropY // 2

        # construct arrays with central bin positions in pixel coordinates
        posX = np.arange(startX - 0.5 + binX / 2.0,
                         orLenX - dropX + startX - 0.5, binX)
        posY = np.arange(startY - 0.5 + binY / 2.0,
                         orLenY - dropY + startY - 0.5, binY)

        # determine the appropriate wavelength index or indices
        if wavelength is None:
            indices = [0]
        elif wavelength == 'all':
            indices = range(Is.shape[2])
        else:
            if not isinstance(wavelength, (list, tuple)):
                wavelength = [wavelength]
            indices = instrument.wavelengthIndices(wavelength)

        # loop over all requested wavelength indices
        for index in indices:
            wave = wavegrid[index]
            wavename = "{:09.4f}".format(wave.to_value(sm.unit("micron")))
            wavelatex = r"$\lambda={:.4g}$".format(
                wave.value) + sm.latexForUnit(wave)

            # extract the corresponding frame, and transpose to (y,x) style for compatibility with legacy code
            I = Is[:, :, index].T.value
            Q = Qs[:, :, index].T.value
            U = Us[:, :, index].T.value
            V = Vs[:, :, index].T.value

            # perform the actual binning
            binnedI = np.zeros((len(posY), len(posX)))
            binnedQ = np.zeros((len(posY), len(posX)))
            binnedU = np.zeros((len(posY), len(posX)))
            binnedV = np.zeros((len(posY), len(posX)))
            for x in range(len(posX)):
                for y in range(len(posY)):
                    binnedI[y, x] = np.sum(
                        I[startY + binY * y:startY + binY * (y + 1),
                          startX + binX * x:startX + binX * (x + 1)])
                    binnedQ[y, x] = np.sum(
                        Q[startY + binY * y:startY + binY * (y + 1),
                          startX + binX * x:startX + binX * (x + 1)])
                    binnedU[y, x] = np.sum(
                        U[startY + binY * y:startY + binY * (y + 1),
                          startX + binX * x:startX + binX * (x + 1)])
                    binnedV[y, x] = np.sum(
                        V[startY + binY * y:startY + binY * (y + 1),
                          startX + binX * x:startX + binX * (x + 1)])

            # -----------------------------------------------------------------

            # plot a linear polarization map
            if plotLinMap:
                fig, ax = plt.subplots(ncols=1, nrows=1, figsize=figSize)

                # configure the axes
                ax.set_xlim(xmin, xmax)
                ax.set_ylim(ymin, ymax)
                ax.set_xlabel("x" + sm.latexForUnit(xgrid), fontsize='large')
                ax.set_ylabel("y" + sm.latexForUnit(ygrid), fontsize='large')

                # determine intensity range for the background image, ignoring pixels with outrageously high flux
                Ib = I.copy()
                highmask = Ib > 1e6 * np.nanmedian(np.unique(Ib))
                vmax = np.nanmax(Ib[~highmask])
                Ib[highmask] = vmax
                vmin = vmax / 10**decades

                # plot the background image and the corresponding color bar
                normalizer = matplotlib.colors.LogNorm(vmin, vmax)
                cmap = plt.get_cmap('PuRd')
                cmap.set_under('w')
                backPlot = ax.imshow(Ib,
                                     norm=normalizer,
                                     cmap=cmap,
                                     extent=extent,
                                     aspect='equal',
                                     interpolation='bicubic',
                                     origin='lower')
                cbarlabel = sm.latexForSpectralFlux(Is) + sm.latexForUnit(
                    Is) + " @ " + wavelatex
                plt.colorbar(backPlot, ax=ax).set_label(cbarlabel,
                                                        fontsize='large')

                # compute the linear polarization degree
                degreeLD = np.sqrt(binnedQ**2 + binnedU**2)
                degreeLD[degreeLD > 0] /= binnedI[degreeLD > 0]

                # determine a characteristic 'high' degree of polarization in the frame
                # (this has to be done before degreeLD contains 'np.NaN')
                charDegree = np.percentile(degreeLD, 99.0)
                if not 0 < charDegree < 1:
                    charDegree = np.nanmax((np.nanmax(degreeLD), 0.0001))

                # remove pixels with minuscule polarization
                degreeLD[degreeLD < charDegree / 50] = np.NaN

                # determine the scaling so that the longest arrows do not to overlap with neighboring arrows
                if degreeScale is None:
                    degreeScale = _roundUp(charDegree)
                lengthScale = 2.2 * degreeScale * max(
                    float(len(posX)) / figSize[0],
                    float(len(posY)) / figSize[1])
                key = "{:.3g}%".format(100 * degreeScale)

                # compute the polarization angle
                angle = 0.5 * np.arctan2(
                    binnedU, binnedQ
                )  # angle from North through East while looking at the sky

                # create the polarization vector arrays
                xPolarization = -degreeLD * np.sin(
                    angle
                )  #For angle = 0: North & x=0, For angle = 90deg: West & x=-1
                yPolarization = degreeLD * np.cos(
                    angle
                )  #For angle = 0: North & y=1, For angle = 90deg: West & y=0

                # plot the vector field (scale positions to data coordinates)
                X, Y = np.meshgrid(xmin + posX * (xmax - xmin) / orLenX,
                                   ymin + posY * (ymax - ymin) / orLenY)
                quiverPlot = ax.quiver(X,
                                       Y,
                                       xPolarization,
                                       yPolarization,
                                       pivot='middle',
                                       units='inches',
                                       angles='xy',
                                       scale=lengthScale,
                                       scale_units='inches',
                                       headwidth=0,
                                       headlength=1,
                                       headaxislength=1,
                                       minlength=0.8,
                                       width=0.02)
                ax.quiverkey(quiverPlot,
                             0.85,
                             0.02,
                             degreeScale,
                             key,
                             coordinates='axes',
                             labelpos='E')

                # if not in interactive mode, save the figure; otherwise leave it open
                if not ut.interactive(interactive):
                    saveFilePath = ut.savePath(
                        filepath,
                        ".pdf",
                        outDirPath=outDirPath,
                        outFileName="{}_{}_pollinmap.pdf".format(
                            insname, wavename))
                    plt.savefig(saveFilePath,
                                bbox_inches='tight',
                                pad_inches=0.25)
                    plt.close()
                    logging.info("Created {}".format(saveFilePath))

            # -----------------------------------------------------------------

            # plot a linear polarization degree map
            if plotDegMap:
                fig, ax = plt.subplots(ncols=1, nrows=1, figsize=figSize)

                # configure the axes
                ax.set_xlim(xmin, xmax)
                ax.set_ylim(ymin, ymax)
                ax.set_xlabel("x" + sm.latexForUnit(xgrid), fontsize='large')
                ax.set_ylabel("y" + sm.latexForUnit(ygrid), fontsize='large')

                # calculate polarization degree for each pixel, in percent
                # set degree to zero for pixels with very low intensity
                cutmask = I < (np.nanmax(
                    I[I < 1e6 * np.nanmedian(np.unique(I))]) / 10**decades)
                degreeHD = np.sqrt(Q**2 + U**2)
                degreeHD[~cutmask] /= I[~cutmask]
                degreeHD[cutmask] = 0
                degreeHD *= 100

                # plot the image and the corresponding color bar
                vmax = degreeScale if degreeScale is not None else np.percentile(
                    degreeHD, 99)
                normalizer = matplotlib.colors.Normalize(vmin=0, vmax=vmax)
                backPlot = ax.imshow(degreeHD,
                                     norm=normalizer,
                                     cmap='plasma',
                                     extent=extent,
                                     aspect='equal',
                                     interpolation='bicubic',
                                     origin='lower')
                plt.colorbar(backPlot, ax=ax).set_label(
                    "Linear polarization degree (%)" + " @ " + wavelatex,
                    fontsize='large')

                # if not in interactive mode, save the figure; otherwise leave it open
                if not ut.interactive(interactive):
                    saveFilePath = ut.savePath(
                        filepath,
                        ".pdf",
                        outDirPath=outDirPath,
                        outFileName="{}_{}_poldegmap.pdf".format(
                            insname, wavename))
                    plt.savefig(saveFilePath,
                                bbox_inches='tight',
                                pad_inches=0.25)
                    plt.close()
                    logging.info("Created {}".format(saveFilePath))

            # -----------------------------------------------------------------

            # plot the y-axis averaged linear polarization degree
            if plotDegAvg:
                # construct the plot
                fig, ax = plt.subplots(ncols=1, nrows=1, figsize=figSize)
                degreeHD = np.sqrt(
                    np.average(Q, axis=0)**2 + np.average(U, axis=0)**2)
                degreeHD /= np.average(I, axis=0)
                ax.plot(xgrid.value, degreeHD * 100)
                ax.set_xlim(xmin, xmax)
                ax.set_ylim(0, degreeScale)
                ax.set_title("{}   {}".format(insname, wavelatex),
                             fontsize='large')
                ax.set_xlabel("x" + sm.latexForUnit(xgrid), fontsize='large')
                ax.set_ylabel('Average linear polarization degree (%)',
                              fontsize='large')

                # if not in interactive mode, save the figure; otherwise leave it open
                if not ut.interactive(interactive):
                    saveFilePath = ut.savePath(
                        filepathI,
                        ".pdf",
                        outDirPath=outDirPath,
                        outFileName="{}_{}_poldegavg.pdf".format(
                            insname, wavename))
                    plt.savefig(saveFilePath,
                                bbox_inches='tight',
                                pad_inches=0.25)
                    plt.close()
                    logging.info("Created {}".format(saveFilePath))

            # -----------------------------------------------------------------

            # plot a circular polarization map
            if plotCirMap:
                fig, ax = plt.subplots(ncols=1, nrows=1, figsize=figSize)

                # configure the axes
                ax.set_xlim(xmin, xmax)
                ax.set_ylim(ymin, ymax)
                ax.set_xlabel("x" + sm.latexForUnit(xgrid), fontsize='large')
                ax.set_ylabel("y" + sm.latexForUnit(ygrid), fontsize='large')

                # determine intensity range for the background image, ignoring pixels with outrageously high flux
                Ib = I.copy()
                highmask = Ib > 1e6 * np.nanmedian(np.unique(Ib))
                vmax = np.nanmax(Ib[~highmask])
                Ib[highmask] = vmax
                vmin = vmax / 10**decades

                # plot the background image and the corresponding color bar
                normalizer = matplotlib.colors.LogNorm(vmin, vmax)
                cmap = plt.get_cmap('PuRd')
                cmap.set_under('w')
                backPlot = ax.imshow(Ib,
                                     norm=normalizer,
                                     cmap=cmap,
                                     extent=extent,
                                     aspect='equal',
                                     interpolation='bicubic',
                                     origin='lower')
                cbarlabel = sm.latexForSpectralFlux(Is) + sm.latexForUnit(
                    Is) + " @ " + wavelatex
                plt.colorbar(backPlot, ax=ax).set_label(cbarlabel,
                                                        fontsize='large')

                # compute the circular polarization degree
                degreeLD = binnedV.copy()
                degreeLD[binnedI > 0] /= binnedI[binnedI > 0]

                # determine the scaling and add legend
                if degreeScale is None:
                    degreeScale = _roundUp(np.percentile(np.abs(degreeLD), 99))
                lengthScale = 0.7 / max(len(posX), len(posY))
                _circArrow(ax, 0.84 - lengthScale / 2, 0.01 + lengthScale / 2,
                           lengthScale)
                key = r'$+{} \%$'.format(100 * degreeScale)
                ax.text(0.85,
                        0.01 + lengthScale / 2,
                        key,
                        transform=ax.transAxes,
                        ha='left',
                        va='center')

                # actual plotting
                for x in range(len(posX)):
                    for y in range(len(posY)):
                        if np.isfinite(degreeLD[y, x]) and abs(
                                degreeLD[y, x]) > degreeScale / 50:
                            _circArrow(
                                ax, posX[x] / orLenX, posY[y] / orLenY,
                                degreeLD[y, x] / degreeScale * lengthScale)

                # if not in interactive mode, save the figure; otherwise leave it open
                if not ut.interactive(interactive):
                    saveFilePath = ut.savePath(
                        filepath,
                        ".pdf",
                        outDirPath=outDirPath,
                        outFileName="{}_{}_polcirmap.pdf".format(
                            insname, wavename))
                    plt.savefig(saveFilePath,
                                bbox_inches='tight',
                                pad_inches=0.25)
                    plt.close()
                    logging.info("Created {}".format(saveFilePath))
コード例 #6
0
ファイル: plotmagneticfield.py プロジェクト: petercamps/PTS9
def plotMagneticFieldCuts(simulation,
                          *,
                          binSize=(32, 32),
                          outDirPath=None,
                          figSize=(6, 6),
                          interactive=None):

    # find the relevant probes
    probes = [ probe for probe in simulation.probes() \
               if probe.type() in ("DefaultMagneticFieldCutsProbe", "PlanarMagneticFieldCutsProbe") ]

    # iterate over them
    for probe in probes:
        for cut in ("xy", "xz", "yz"):

            # load magnetic field for the this probe and cut
            paths = probe.outFilePaths("{}.fits".format(cut))
            if len(paths) == 1:

                # load data cube with shape (nx, ny, 3)
                Bs = sm.loadFits(paths[0])

                # load the axes grids
                xgrid, ygrid, dummygrid = sm.getFitsAxes(paths[0])
                xmin = xgrid[0].value
                xmax = xgrid[-1].value
                ymin = ygrid[0].value
                ymax = ygrid[-1].value
                extent = (xmin, xmax, ymin, ymax)

                # determine binning configuration
                binX = binSize[0]
                orLenX = Bs.shape[0]
                dropX = orLenX % binX
                startX = dropX // 2
                binY = binSize[1]
                orLenY = Bs.shape[1]
                dropY = orLenY % binY
                startY = dropY // 2

                # construct arrays with central bin positions in pixel coordinates
                posX = np.arange(startX - 0.5 + binX / 2.0,
                                 orLenX - dropX + startX - 0.5, binX)
                posY = np.arange(startY - 0.5 + binY / 2.0,
                                 orLenY - dropY + startY - 0.5, binY)

                # perform the actual binning, while splitting in vector components
                Bx = np.zeros((len(posX), len(posY)))
                By = np.zeros((len(posX), len(posY)))
                Bz = np.zeros((len(posX), len(posY)))
                for x in range(len(posX)):
                    for y in range(len(posY)):
                        Bx[x, y] = np.mean(
                            Bs[startX + binX * x:startX + binX * (x + 1),
                               startY + binY * y:startY + binY * (y + 1),
                               0].value)
                        By[x, y] = np.mean(
                            Bs[startX + binX * x:startX + binX * (x + 1),
                               startY + binY * y:startY + binY * (y + 1),
                               1].value)
                        Bz[x, y] = np.mean(
                            Bs[startX + binX * x:startX + binX * (x + 1),
                               startY + binY * y:startY + binY * (y + 1),
                               2].value)

                # start the figure
                fig, ax = plt.subplots(ncols=1, nrows=1, figsize=figSize)

                # configure the axes
                ax.set_xlim(xmin, xmax)
                ax.set_ylim(ymin, ymax)
                ax.set_xlabel(cut[0] + sm.latexForUnit(xgrid),
                              fontsize='large')
                ax.set_ylabel(cut[-1] + sm.latexForUnit(ygrid),
                              fontsize='large')
                ax.set_aspect('equal')

                # determine a characteristic 'large' field strength in the cut plane
                Bmax = np.percentile(np.sqrt(Bx**2 + By**2), 99.0)
                if Bmax == 0: Bmax = 1  # guard against all zeros

                # determine the scaling so that the longest arrows do not to overlap with neighboring arrows
                lengthScale = 2 * Bmax * max(
                    float(len(posX)) / figSize[0],
                    float(len(posY)) / figSize[1])
                key = "{:.3g}{}".format(Bmax, sm.latexForUnit(Bs))

                # determine the color scheme for the component orthogonal to cut plane
                Bzmax = np.abs(Bz).max()
                if Bzmax == 0: Bzmax = 1  # guard against all zeros
                normalizer = matplotlib.colors.Normalize(-Bzmax, Bzmax)

                # plot the vector field (scale positions to data coordinates)
                X, Y = np.meshgrid(xmin + posX * (xmax - xmin) / orLenX,
                                   ymin + posY * (ymax - ymin) / orLenY,
                                   indexing='ij')
                quiverPlot = ax.quiver(X,
                                       Y,
                                       Bx,
                                       By,
                                       Bz,
                                       cmap='jet',
                                       norm=normalizer,
                                       pivot='middle',
                                       units='inches',
                                       angles='xy',
                                       scale=lengthScale,
                                       scale_units='inches',
                                       width=0.015,
                                       headwidth=2.5,
                                       headlength=2,
                                       headaxislength=2,
                                       minlength=0.8)
                ax.quiverkey(quiverPlot,
                             0.8,
                             -0.08,
                             Bmax,
                             key,
                             coordinates='axes',
                             labelpos='E')

                # if not in interactive mode, save the figure; otherwise leave it open
                if not ut.interactive(interactive):
                    saveFilePath = ut.savePath(simulation.outFilePath(
                        "{}_B_{}.pdf".format(probe.name(), cut)),
                                               (".pdf", ".png"),
                                               outDirPath=outDirPath)
                    plt.savefig(saveFilePath,
                                bbox_inches='tight',
                                pad_inches=0.25)
                    plt.close()
                    logging.info("Created {}".format(saveFilePath))