コード例 #1
0
ファイル: mnist.py プロジェクト: rintukutum/pt-sdae
def main(cuda, batch_size, pretrain_epochs, finetune_epochs):
    writer = SummaryWriter()  # create the TensorBoard object

    # callback function to call during training, uses writer from the scope
    def training_callback(epoch, lr, loss, validation_loss):
        writer.add_scalars('data/autoencoder', {
            'lr': lr,
            'loss': loss,
            'validation_loss': validation_loss,
        }, epoch)

    ds_train = CachedMNIST(train=True, cuda=cuda)  # training dataset
    ds_val = CachedMNIST(train=False, cuda=cuda)  # evaluation dataset
    autoencoder = StackedDenoisingAutoEncoder([28 * 28, 500, 500, 2000, 10],
                                              final_activation=None)
    if cuda:
        autoencoder.cuda()
    print('Pretraining stage.')
    ae.pretrain(
        ds_train,
        autoencoder,
        cuda=cuda,
        validation=ds_val,
        epochs=pretrain_epochs,
        batch_size=batch_size,
        optimizer=lambda model: SGD(model.parameters(), lr=0.1, momentum=0.9),
        scheduler=lambda x: StepLR(x, 100, gamma=0.1),
        corruption=0.2)
    print('Training stage.')
    ae_optimizer = SGD(params=autoencoder.parameters(), lr=0.1, momentum=0.9)
    ae.train(ds_train,
             autoencoder,
             cuda=cuda,
             validation=ds_val,
             epochs=finetune_epochs,
             batch_size=batch_size,
             optimizer=ae_optimizer,
             scheduler=StepLR(ae_optimizer, 100, gamma=0.1),
             corruption=0.2,
             update_callback=training_callback)
    print('k-Means stage')
    dataloader = DataLoader(ds_train, batch_size=1024, shuffle=False)
    kmeans = KMeans(n_clusters=10, n_init=20)
    autoencoder.eval()
    features = []
    actual = []
    for index, batch in enumerate(dataloader):
        if (isinstance(batch, tuple)
                or isinstance(batch, list)) and len(batch) == 2:
            batch, value = batch  # if we have a prediction label, separate it to actual
            actual.append(value)
        if cuda:
            batch = batch.cuda(async=True)
        batch = batch.squeeze(1).view(batch.size(0), -1)
        features.append(autoencoder.encoder(batch).detach().cpu())
    actual = torch.cat(actual).long().cpu().numpy()
    predicted = kmeans.fit_predict(torch.cat(features).numpy())
    reassignment, accuracy = cluster_accuracy(predicted, actual)
    print('Final k-Means accuracy: %s' % accuracy)
    predicted_reassigned = [reassignment[item]
                            for item in predicted]  # TODO numpify
    confusion = confusion_matrix(actual, predicted_reassigned)
    normalised_confusion = confusion.astype('float') / confusion.sum(
        axis=1)[:, np.newaxis]
    confusion_id = uuid.uuid4().hex
    sns.heatmap(normalised_confusion).get_figure().savefig('confusion_%s.png' %
                                                           confusion_id)
    print('Writing out confusion diagram with UUID: %s' % confusion_id)
    writer.add_embedding(
        torch.cat(features),
        metadata=predicted,
        label_img=ds_train.ds.train_data.float().unsqueeze(1),  # TODO bit ugly
        tag='predicted')
    writer.close()
コード例 #2
0
ファイル: sklearn_api.py プロジェクト: baohq1595/pt-sdae
class SDAETransformerBase(TransformerMixin, BaseEstimator):
    def __init__(self,
                 dimensions: List[int],
                 cuda: Optional[bool] = None,
                 batch_size: int = 256,
                 pretrain_epochs: int = 200,
                 finetune_epochs: int = 500,
                 corruption: Optional[float] = 0.2,
                 optimiser_pretrain: Callable[[torch.nn.Module], torch.optim.Optimizer] = lambda x: SGD(x.parameters(), lr=0.1, momentum=0.9),
                 optimiser_train: Callable[[torch.nn.Module], torch.optim.Optimizer] = lambda x: SGD(x.parameters(), lr=0.1, momentum=0.9),
                 scheduler: Optional[Callable[[torch.optim.Optimizer], Any]] = lambda x: StepLR(x, 100, gamma=0.1),
                 final_activation: Optional[torch.nn.Module] = None) -> None:
        self.cuda = torch.cuda.is_available() if cuda is None else cuda
        self.batch_size = batch_size
        self.dimensions = dimensions
        self.pretrain_epochs = pretrain_epochs
        self.finetune_epochs = finetune_epochs
        self.optimiser_pretrain = optimiser_pretrain
        self.optimiser_train = optimiser_train
        self.scheduler = scheduler
        self.corruption = corruption
        self.autoencoder = None
        self.final_activation = final_activation

    def fit(self, X, y=None):
        if issparse(X):
            X = X.todense()
        ds = TensorDataset(torch.from_numpy(X.astype(np.float32)))
        self.autoencoder = StackedDenoisingAutoEncoder(self.dimensions, final_activation=self.final_activation)
        if self.cuda:
            self.autoencoder.cuda()
        ae.pretrain(
            ds,
            self.autoencoder,
            cuda=self.cuda,
            epochs=self.pretrain_epochs,
            batch_size=self.batch_size,
            optimizer=self.optimiser_pretrain,
            scheduler=self.scheduler,
            corruption=0.2,
            silent=True
        )
        ae_optimizer = self.optimiser_train(self.autoencoder)
        ae.train(
            ds,
            self.autoencoder,
            cuda=self.cuda,
            epochs=self.finetune_epochs,
            batch_size=self.batch_size,
            optimizer=ae_optimizer,
            scheduler=self.scheduler(ae_optimizer),
            corruption=self.corruption,
            silent=True
        )
        return self

    def score(self, X, y=None, sample_weight=None) -> float:
        loss_function = torch.nn.MSELoss()
        if self.autoencoder is None:
            raise NotFittedError
        if issparse(X):
            X = X.todense()
        self.autoencoder.eval()
        ds = TensorDataset(torch.from_numpy(X.astype(np.float32)))
        dataloader = DataLoader(
            ds,
            batch_size=self.batch_size,
            shuffle=False
        )
        loss = 0
        for index, batch in enumerate(dataloader):
            batch = batch[0]
            if self.cuda:
                batch = batch.cuda(non_blocking=True)
            output = self.autoencoder(batch)
            loss += float(loss_function(output, batch).item())
        return loss
コード例 #3
0
    # pretrain
    ptsdae.model.pretrain(dataset,
                          autoencoder=ae,
                          epochs=args.pretrain_epochs,
                          batch_size=args.batch_size,
                          optimizer=get_opt,
                          scheduler=get_sched,
                          validation=validation,
                          update_freq=args.pretrain_epochs // 50,
                          cuda=True,
                          num_workers=args.njobs)

    # train

    # prep for cuda usage ...
    ae.cuda()

    # get our scheduler and optimizers
    opt = get_opt(ae, lr=args.train_lr)
    sched = get_sched(opt)

    print("Training ...")
    sys.stdout.flush()
    ptsdae.model.train(dataset,
                       autoencoder=ae,
                       epochs=args.train_epochs,
                       batch_size=args.batch_size,
                       optimizer=opt,
                       scheduler=sched,
                       validation=validation,
                       update_freq=args.train_epochs // 50,
コード例 #4
0
    pretrain_epochs = 300
    finetune_epochs = 500
    training_callback = None
    cuda = torch.cuda.is_available()
    ds_val = None
    embedded_dim = get_embedded_dim()

    try:
        autoencoder = pickle.load(open(autoencoder_path, 'rb'))
    except:
        autoencoder = StackedDenoisingAutoEncoder(
            dimensions=[embedded_dim, 500, 500, 2000, 10],
            final_activation=None,
        )
        if cuda:
            autoencoder.cuda()

        print('SDAE Pretraining stage.', flush=True)
        print(f'@ {time.time() - start_time}\n', flush=True)
        ae.pretrain(
            ds_train,
            autoencoder,
            cuda=cuda,
            validation=ds_val,
            epochs=pretrain_epochs,
            batch_size=batch_size,
            optimizer=lambda model: SGD(
                model.parameters(), lr=0.1, momentum=0.9),
            scheduler=lambda x: StepLR(x, 100, gamma=0.1),
            corruption=0.2,
            silent=True,
コード例 #5
0
def main(cuda, batch_size, pretrain_epochs, finetune_epochs, testing_mode):
    writer = SummaryWriter()  # create the TensorBoard object

    # callback function to call during training, uses writer from the scope

    def training_callback(epoch, lr, loss, validation_loss):
        writer.add_scalars(
            "data/autoencoder",
            {
                "lr": lr,
                "loss": loss,
                "validation_loss": validation_loss,
            },
            epoch,
        )

    ds_train = CachedMNIST(train=True, cuda=cuda,
                           testing_mode=testing_mode)  # training dataset
    ds_val = CachedMNIST(train=False, cuda=cuda,
                         testing_mode=testing_mode)  # evaluation dataset
    autoencoder = StackedDenoisingAutoEncoder([28 * 28, 500, 500, 2000, 10],
                                              final_activation=None)
    if cuda:
        autoencoder.cuda()
    print("Pretraining stage.")
    ae.pretrain(
        ds_train,
        autoencoder,
        cuda=cuda,
        validation=ds_val,
        epochs=pretrain_epochs,
        batch_size=batch_size,
        optimizer=lambda model: SGD(model.parameters(), lr=0.1, momentum=0.9),
        scheduler=lambda x: StepLR(x, 100, gamma=0.1),
        corruption=0.2,
    )
    print("Training stage.")
    ae_optimizer = SGD(params=autoencoder.parameters(), lr=0.1, momentum=0.9)
    ae.train(
        ds_train,
        autoencoder,
        cuda=cuda,
        validation=ds_val,
        epochs=finetune_epochs,
        batch_size=batch_size,
        optimizer=ae_optimizer,
        scheduler=StepLR(ae_optimizer, 100, gamma=0.1),
        corruption=0.2,
        update_callback=training_callback,
    )
    print("DEC stage.")
    model = DEC(cluster_number=10,
                hidden_dimension=10,
                encoder=autoencoder.encoder)
    if cuda:
        model.cuda()
    dec_optimizer = SGD(model.parameters(), lr=0.01, momentum=0.9)
    train(
        dataset=ds_train,
        model=model,
        epochs=100,
        batch_size=256,
        optimizer=dec_optimizer,
        stopping_delta=0.000001,
        cuda=cuda,
    )
    predicted, actual = predict(ds_train,
                                model,
                                1024,
                                silent=True,
                                return_actual=True,
                                cuda=cuda)
    actual = actual.cpu().numpy()
    predicted = predicted.cpu().numpy()
    reassignment, accuracy = cluster_accuracy(actual, predicted)
    print("Final DEC accuracy: %s" % accuracy)
    if not testing_mode:
        predicted_reassigned = [reassignment[item]
                                for item in predicted]  # TODO numpify
        confusion = confusion_matrix(actual, predicted_reassigned)
        normalised_confusion = (confusion.astype("float") /
                                confusion.sum(axis=1)[:, np.newaxis])
        confusion_id = uuid.uuid4().hex
        sns.heatmap(normalised_confusion).get_figure().savefig(
            "confusion_%s.png" % confusion_id)
        print("Writing out confusion diagram with UUID: %s" % confusion_id)
        writer.close()