コード例 #1
0
def train_valid_or_test(pas):
    """
    主程序
    :return:
    """
    # 建立参数、数据、模型、模型最佳值
    p = pas.p
    model, model_name = pas.build_model_one_by_one(flag=p['gru'])
    best = GlobalBest(at_nums=p['at_nums'])  # 存放最优数据
    _, starts_ends_tes = pas.compute_start_end(flag='test')
    _, starts_ends_auc = pas.compute_start_end(flag='test_auc')

    # 直接取出来部分变量,后边就不用加'pas.'了。
    user_num, item_num, dist_num = pas.user_num, pas.item_num, pas.dist_num
    tra_buys_masks, tra_masks, tra_buys_neg_masks = pas.tra_buys_masks, pas.tra_masks, pas.tra_buys_neg_masks
    tes_buys_masks, tes_masks, tes_buys_neg_masks = pas.tes_buys_masks, pas.tes_masks, pas.tes_buys_neg_masks
    dd = p['dd']
    pois_cordis = pas.pois_cordis
    ulptai = pas.ulptai
    del pas

    ini_epoch = 0
    if 2 == p['gru']:
        ini_epoch = p['load_epoch']
        if p['load_epoch'] != 0:
            print('Loading model ...')
            m_path = './model/' + p['dataset'] + '/' + model_name + '_size' + \
                     str(p['latent_size']) + '_UD' + str(p['UD']) + '_dd' + str(p['dd']) + '_epoch' + str(
                p['load_epoch'])
            with open(m_path, 'rb') as f:
                loaded_objects = cPickle.load(f)
            model.load_params(loaded_objects)
            ini_epoch = p['load_epoch'] + 1

    # 主循环
    losses = []
    times0, times1, times2, times3 = [], [], [], []
    for epoch in np.arange(ini_epoch, p['epochs']):
        print(
            "Epoch {val} ==================================".format(val=epoch))
        # 每次epoch,都要重新选择负样本。都要把数据打乱重排,这样会以随机方式选择样本计算梯度,可得到精确结果
        if epoch > 0:  # epoch=0的负样本已在循环前生成,且已用于类的初始化
            tra_buys_neg_masks = fun_random_neg_masks_tra(
                item_num, tra_buys_masks)
            tes_buys_neg_masks = fun_random_neg_masks_tes(
                item_num, tra_buys_masks, tes_buys_masks)
            if p['gru'] in [0, 1]:
                model.update_neg_masks(tra_buys_neg_masks, tes_buys_neg_masks)
            else:
                tra_dist_neg_masks = fun_compute_dist_neg(
                    tra_buys_masks, tra_masks, tra_buys_neg_masks, pois_cordis,
                    dd, dist_num)
                model.s_update_neg_masks(tra_buys_neg_masks,
                                         tes_buys_neg_masks,
                                         tra_dist_neg_masks)

        # ----------------------------------------------------------------------------------------------------------
        print("\tTraining ...")
        t0 = time.time()
        loss = 0.
        ls = [0, 0]
        total_ls = []
        random.seed(str(123 + epoch))
        user_idxs_tra = np.arange(user_num, dtype=np.int32)
        random.shuffle(user_idxs_tra)  # 每个epoch都打乱user_id输入顺序
        if 0 == p['gru']:
            for uidx in user_idxs_tra:
                tra = tra_buys_masks[uidx]
                neg = tra_buys_neg_masks[uidx]
                for i in np.arange(sum(tra_masks[uidx])):
                    loss += model.train(uidx, [tra[i], neg[i]])
        elif 1 == p['gru'] or 3 == p['gru']:
            for uidx in user_idxs_tra:
                loss += model.train(uidx)
        else:
            for uidx in user_idxs_tra:
                los, a, b, ls = model.train(uidx)
                loss += los
                a_b = [a, b]
                a_b.extend(ls)
                total_ls.append(a_b)
        rnn_l2_sqr = model.l2.eval()  # model.l2是'TensorVariable',无法直接显示其值

        # 把loss及loss_weight保存下来.

        def cut2(x):
            return '%0.2f' % x

        print('\t\tsum_loss = {val} = {v1} + {v2}'.format(val=loss +
                                                          rnn_l2_sqr,
                                                          v1=loss,
                                                          v2=rnn_l2_sqr))
        losses.append('{v1}'.format(v1=int(loss + rnn_l2_sqr)))
        # ls = model.loss_weight
        print('\t\tloss_weight = {v1}, {v2}'.format(v1=ls[0], v2=ls[1]))
        t1 = time.time()
        times0.append(t1 - t0)

        # ----------------------------------------------------------------------------------------------------------
        print("\tPredicting ...")
        # 计算:所有用户、商品的表达
        if 0 == p['gru']:
            model.update_trained_items()
            model.update_trained_users()
        elif 1 == p['gru']:
            model.update_trained_items()  # 对于MV-GRU,这里会先算出来图文融合特征。
            all_hus = []
            for start_end in starts_ends_tes:
                sub_all_hus = model.predict(start_end)
                all_hus.extend(sub_all_hus)
            model.update_trained_users(all_hus)
        elif 2 == p['gru']:
            model.update_trained_items()
            model.update_trained_dists()
            all_hus = []
            all_sus = []
            for start_end in starts_ends_tes:
                [sub_all_hus, sub_all_sus] = model.predict(start_end)
                all_hus.extend(sub_all_hus)
                all_sus.extend(sub_all_sus)
            probs = fun_acquire_prob(
                all_sus, ulptai,
                dist_num)  # 输入shape=(2310, 1520), (2310, 5528)
            model.update_trained_users(all_hus)
            model.update_prob(probs)
        else:
            model.update_trained_items()
            model.update_trained_dists()
            all_hus = []
            for start_end in starts_ends_tes:
                sub_all_hus = model.predict(start_end)
                all_hus.extend(sub_all_hus)
            model.update_trained_users(all_hus)
        t2 = time.time()
        times1.append(t2 - t1)

        # 计算各种指标,并输出当前最优值。
        fun_predict_auc_recall_map_ndcg(p, model, best, epoch, starts_ends_auc,
                                        starts_ends_tes, tes_buys_masks,
                                        tes_masks)
        best.fun_print_best(epoch)  # 每次都只输出当前最优的结果
        t3 = time.time()
        times2.append(t3 - t2)
        print(
            '\tavg. time (train, user, test): %0.0fs,' % np.average(times0),
            '%0.0fs,' % np.average(times1), '%0.0fs' % np.average(times2),
            '| alpha, lam: {v1}'.format(
                v1=', '.join([str(lam) for lam in [p['alpha'], p['lambda']]])),
            '| model: {v1}'.format(v1=model_name))

        # ----------------------------------------------------------------------------------------------------------
        if epoch == p['epochs'] - 1:
            # 保存最优值、所有的损失值。
            print("\tBest and losses saving ...")
            path = os.path.join(
                os.path.split(__file__)[0], '..', 'Results_best_and_losses',
                PATH.split('/')[-2])
            fun_save_best_and_losses(path, model_name, epoch, p, best, losses)
            if 2 == p['gru']:
                size = p['latent_size']
                fil_name = 'size' + str(size) + 'UD' + str(
                    p['UD']) + 'dd' + str(p['dd']) + 'loss.txt'
                fil = os.path.join(path, fil_name)
                np.savetxt(fil, total_ls)

        if 2 == p['gru'] and epoch % p['save_per_epoch'] == 0 and epoch != 0:
            # 保存模型
            m_path = './model/' + p['dataset'] + '/' + model_name + '_size' + \
                     str(p['latent_size']) + '_UD' + str(p['UD']) + '_dd' + str(p['dd']) + '_epoch' + str(epoch)
            with open(m_path, 'wb') as file:
                save_model = [
                    model.loss_weight.get_value(),
                    model.wd.get_value(),
                    model.lt.get_value(),
                    model.di.get_value(),
                    model.ui.get_value(),
                    model.wh.get_value(),
                    model.bi.get_value(),
                    model.vs.get_value(),
                    model.bs.get_value()
                ]
                cPickle.dump(save_model,
                             file,
                             protocol=cPickle.HIGHEST_PROTOCOL)

    for i in p.items():
        print(i)
    print('\t the current Class name is: {val}'.format(val=model_name))
コード例 #2
0
def train_valid_or_test():
    """
    主程序
    :return:
    """
    # 建立参数、数据、模型、模型最佳值
    pas = Params()
    p = pas.p
    model, model_name = pas.build_model_one_by_one(flag=p['mvgru'])
    best = GlobalBest(at_nums=p['at_nums'], intervals=p['intervals'])   # 存放最优数据
    _, starts_ends_tes = pas.compute_start_end(flag='test_top_k')   # tes时顺序处理即可。
    _, starts_ends_auc = pas.compute_start_end(flag='test_auc')

    # 直接取出来部分变量,后边就不用加'pas.'了。
    user_num, item_num = pas.user_num, pas.item_num
    tra_buys_masks, tra_masks = np.asarray(pas.tra_buys_masks), np.asarray(pas.tra_masks)
    tes_buys_masks, tes_masks = np.asarray(pas.tes_buys_masks), np.asarray(pas.tes_masks)
    tra_buys_neg_masks = np.asarray(pas.tra_buys_neg_masks)
    test_i_cou, test_i_intervals_cumsum, test_i_cold_active = pas.tic, pas.tiic, pas.tica
    del pas

    # 主循环
    losses = []
    times0, times1, times2 = [], [], []
    for epoch in np.arange(p['epochs']):
        print("Epoch {val} ==================================".format(val=epoch))
        # 每次epoch,都要重新选择负样本。都要把数据打乱重排,这样会以随机方式选择样本计算梯度,可得到精确结果
        if epoch > 0:       # epoch=0的负样本已在循环前生成,且已用于类的初始化
            tra_buys_neg_masks = fun_random_neg_masks_tra(item_num, tra_buys_masks)
            tes_buys_neg_masks = fun_random_neg_masks_tes(item_num, tra_buys_masks, tes_buys_masks)
            model.update_neg_masks(tra_buys_neg_masks, tes_buys_neg_masks)

        # --------------------------------------------------------------------------------------------------------------
        print("\tTraining ...")
        t0 = time.time()
        loss = 0.
        random.seed(str(123 + epoch))
        user_idxs_tra = np.arange(user_num, dtype=np.int32)
        random.shuffle(user_idxs_tra)       # 每个epoch都打乱user_id输入顺序
        for uidx in user_idxs_tra:
            tra = tra_buys_masks[uidx]
            neg = tra_buys_neg_masks[uidx]
            for i in np.arange(sum(tra_masks[uidx])):
                loss += model.train(uidx, [tra[i], neg[i]])
        rnn_l2_sqr = model.l2.eval()            # model.l2是'TensorVariable',无法直接显示其值
        print('\t\tsum_loss = {val} = {v1} + {v2}'.format(val=loss + rnn_l2_sqr, v1=loss, v2=rnn_l2_sqr))
        losses.append('%0.2f' % (loss + rnn_l2_sqr))
        t1 = time.time()
        times0.append(t1 - t0)

        # --------------------------------------------------------------------------------------------------------------
        print("\tPredicting ...")
        # 计算:所有用户、商品的表达
        model.update_trained_items()    # 要先运行这个更新items特征。对于MV-GRU,这里会先算出来图文融合特征。
        model.update_trained_users()
        t2 = time.time()
        times1.append(t2 - t1)

        # 计算各种指标,并输出当前最优值。
        fun_predict_auc_recall_map_ndcg(
            p, model, best, epoch, starts_ends_auc, starts_ends_tes,
            tes_buys_masks, tes_masks,
            test_i_cou, test_i_intervals_cumsum, test_i_cold_active)
        best.fun_print_best(epoch)   # 每次都只输出当前最优的结果
        t3 = time.time()
        times2.append(t3-t2)
        tmp1 = '| lam: %s' % ', '.join([str(lam) for lam in [p['lambda'], p['lambda_ev'], p['lambda_ae']]])
        tmp2 = '| model: {v1}'.format(v1=model_name)
        tmp3 = '| tra_fea_zero: %0.1f' % p['train_fea_zero']
        print('\tavg. time (train, user, test): %0.0fs,' % np.average(times0),
              '%0.0fs,' % np.average(times1), '%0.0fs' % np.average(times2), tmp1, tmp2, tmp3)

        # --------------------------------------------------------------------------------------------------------------
        # 保存epoch=29/49时的最优值。
        if epoch == p['epochs'] - 1:
            # 保存最优值、所有的损失值。
            print("\t-----------------------------------------------------------------")
            print("\tBest and losses saving ...")
            path = os.path.join(os.path.split(__file__)[0], '..', 'Results_best_and_losses', PATH.split('/')[-2])
            fun_save_best_and_losses(path, model_name + ' - denoise', epoch, p, best, losses)

    for i in p.items():
        print(i)
    print('\t the current Class name is: {val}'.format(val=model_name))
コード例 #3
0
def train_valid_or_test():
    """
    主程序
    :return:
    """
    # 建立参数、数据、模型、模型最佳值
    pas = Params()
    p = pas.p
    if 0 == p['mini_batch']:
        model, model_name, size = pas.build_model_one_by_one(flag=p['marank'])
    else:
        model, model_name, size = pas.build_model_mini_batch(flag=p['marank'])
    best = GlobalBest(at_nums=p['at_nums'])   # 存放最优数据
    batch_idxs_tra, starts_ends_tra = pas.compute_start_end(flag='train')
    _, starts_ends_tes = pas.compute_start_end(flag='test')
    _, starts_ends_auc = pas.compute_start_end(flag='test_auc')

    # 直接取出来部分变量,后边就不用加'pas.'了。
    user_num, item_num = pas.user_num, pas.item_num
    tra_buys_masks, tra_masks, tra_buys_neg_masks = pas.tra_buys_masks, pas.tra_masks, pas.tra_buys_neg_masks
    tes_buys_masks, tes_masks, tes_buys_neg_masks = pas.tes_buys_masks, pas.tes_masks, pas.tes_buys_neg_masks
    tra_set_masks = pas.tra_set_masks
    del pas

    # 主循环
    losses = []
    times0, times1, times2, times3 = [], [], [], []
    for epoch in np.arange(p['epochs']):
        print("Epoch {val} ==================================".format(val=epoch))
        # 每次epoch,都要重新选择负样本。都要把数据打乱重排,这样会以随机方式选择样本计算梯度,可得到精确结果
        if epoch > 0:       # epoch=0的负样本已在循环前生成,且已用于类的初始化
            tra_buys_neg_masks = fun_random_neg_masks_tra(item_num, tra_buys_masks)
            tes_buys_neg_masks = fun_random_neg_masks_tes(item_num, tra_buys_masks, tes_buys_masks)
            model.update_neg_masks(tra_buys_neg_masks, tes_buys_neg_masks)

        # ----------------------------------------------------------------------------------------------------------
        print("\tTraining ...")
        t0 = time.time()
        loss = 0.
        random.seed(str(123 + epoch))
        if 0 == p['mini_batch']:
            user_idxs_tra = np.arange(user_num, dtype=np.int32)
            random.shuffle(user_idxs_tra)       # 每个epoch都打乱user_id输入顺序
            for uidx in user_idxs_tra:
                tra = tra_buys_masks[uidx]
                neg = tra_buys_neg_masks[uidx]
                u_set = tra_set_masks[uidx]
                for i in np.arange(1, sum(tra_masks[uidx])):
                    # 正负样本是t=1的,item集用t=0的。
                    # tra = [0, 1, 2, 3]
                    # u_set = [[10, 0], [0, 1], [1, 2], [2, 3]]
                    pq = [tra[i], neg[i]]
                    loss += model.train(uidx, pq, list(u_set[i-1]))   # 得用list,不然传入theano会有问题。
        else:
            random.shuffle(batch_idxs_tra)      # 每个epoch都打乱batch_idx输入顺序
            for bidx in batch_idxs_tra:
                start_end = starts_ends_tra[bidx]
                random.shuffle(start_end)       # 打乱batch内的indexes
                usrs = start_end
                tras = tra_buys_masks[start_end]        # 每个用户的正样本序列是一行。共多行。
                negs = tra_buys_neg_masks[start_end]
                u_sets = tra_set_masks[start_end]
                msks = tra_masks[start_end]
                for j in np.arange(1, max(np.sum(msks, axis=1))):
                    pqs = [tras[:, j], negs[:, j]]  # shape=(2, n)
                    cidxs = u_sets[:, j-1, :]         # (n, set_size)
                    cidxs = [list(e) for e in cidxs]
                    loss += model.train(usrs, pqs, cidxs, list(msks[:, j]))   # 每次取某一列(各usr的第j个item)

        rnn_l2_sqr = model.l2.eval()            # model.l2是'TensorVariable',无法直接显示其值
        print('\t\tsum_loss = {val} = {v1} + {v2}'.format(val=loss + rnn_l2_sqr, v1=loss, v2=rnn_l2_sqr))
        losses.append('{v1}'.format(v1=int(loss + rnn_l2_sqr)))
        t1 = time.time()
        times0.append(t1 - t0)

        # ----------------------------------------------------------------------------------------------------------
        if 0 == epoch % 3 or epoch >= (p['epochs'] - 10):
            print("\tPredicting ...")
            # 计算:所有用户、商品的表达
            model.update_trained_items()    # 对于MV-GRU,这里会先算出来图文融合特征。
            model.update_trained_users()
            all_usr_c = []
            all_usr_l = []
            for start_end in starts_ends_tes:
                sub_usr_c, sub_usr_l = model.predict(start_end)
                all_usr_c.extend(sub_usr_c)
                all_usr_l.extend(sub_usr_l)
            model.update_trained_users_att(all_usr_c, all_usr_l)
            t2 = time.time()
            times1.append(t2 - t1)

            # 计算各种指标,并输出当前最优值。
            fun_predict_auc_recall_map_ndcg(
                p, model, best, epoch, starts_ends_auc, starts_ends_tes, tes_buys_masks, tes_masks)
            best.fun_print_best(epoch)   # 每次都只输出当前最优的结果
            t3 = time.time()
            times2.append(t3-t2)
            print('\tavg. time (train, user, test): %0.0fs,' % np.average(times0),
                  '%0.0fs,' % np.average(times1), '%0.0fs' % np.average(times2),
                  '| alpha, lam: {v1}'.format(v1=', '.join([str(lam) for lam in [p['alpha'], p['lambda']]])),
                  '| model: {v1}, S{v2}_L{v3}'.format(v1=model_name, v2=p['set_len'], v3=p['layer']))

        # ----------------------------------------------------------------------------------------------------------
        if epoch in [p['epochs'] - 1, 99, 199]:
            # 保存最优值、所有的损失值。
            print("\tBest and losses saving ...")
            path = os.path.join(os.path.split(__file__)[0], '..', 'Results_best_and_losses', PATH.split('/')[-2])
            fun_save_best_and_losses(path, model_name, epoch, p, best, losses)

    for i in p.items():
        print(i)
    print('\t the current Class name is: {val}'.format(val=model_name))
コード例 #4
0
def train_valid_or_test():
    """
    主程序
    :return:
    """
    # 建立参数、数据、模型、模型最佳值
    pas = Params()
    p = pas.p
    model, model_name = pas.build_model_one_by_one()
    best = GlobalBest(at_nums=p['at_nums'])   # 存放最优数据
    _, starts_ends_tes = pas.compute_start_end(flag='test')
    _, starts_ends_auc = pas.compute_start_end(flag='test_auc')

    # 直接取出来部分变量,后边就不用加'pas.'了。
    user_num, item_num = pas.user_num, pas.item_num
    tra_pois, tra_pois_negs = pas.tra_pois, pas.tra_pois_negs
    tes_pois_masks, tes_masks, tes_pois_neg_masks = pas.tes_pois_masks, pas.tes_masks, pas.tes_pois_neg_masks
    del pas

    # 主循环
    losses = []
    times0, times1, times2, times3 = [], [], [], []
    for epoch in np.arange(p['epochs']):
        print("Epoch {val} ==================================".format(val=epoch))
        # 每次epoch,都要重新选择负样本。都要把数据打乱重排,这样会以随机方式选择样本计算梯度,可得到精确结果
        if epoch > 0:       # epoch=0的负样本已在循环前生成,且已用于类的初始化
            tes_pois_neg_masks = fun_random_neg_masks_tes(item_num, tra_pois, tes_pois_masks)
            model.update_neg_masks(tes_pois_neg_masks)

        # ----------------------------------------------------------------------------------------------------------
        print("\tTraining ...")
        t0 = time.time()
        loss = 0.
        random.seed(str(123 + epoch))
        user_idxs_tra = np.arange(user_num, dtype=np.int32)
        random.shuffle(user_idxs_tra)       # 每个epoch都打乱user_id输入顺序
        for uidx in user_idxs_tra:
            tra = tra_pois[uidx]            # list
            negs = tra_pois_negs[uidx]      # 嵌套list
            for i in np.arange(len(tra)-1):     # i是t-1时刻,i+1是t时刻。
                # 注意:负样本是从截断距离内所有邻居里随机取了1个,和BPR、RNN一样只取一个。
                loss += model.train(uidx, tra[i], tra[i+1], random.sample(negs[i+1], 1))
        rnn_l2_sqr = model.l2.eval()            # model.l2是'TensorVariable',无法直接显示其值
        print('\t\tsum_loss = {val} = {v1} - {v2}'.format(val=loss + rnn_l2_sqr, v1=loss, v2=rnn_l2_sqr))
        losses.append('{v1}'.format(v1=int(loss - rnn_l2_sqr)))
        t1 = time.time()
        times0.append(t1 - t0)

        # ----------------------------------------------------------------------------------------------------------
        print("\tPredicting ...")
        # 计算各种指标,并输出当前最优值。
        fun_predict_auc_recall_map_ndcg(
            p, model, best, epoch, starts_ends_auc, starts_ends_tes, tes_pois_masks, tes_masks)
        best.fun_print_best(epoch)   # 每次都只输出当前最优的结果
        t2 = time.time()
        times1.append(t2-t1)
        print('\tavg. time (train, test): %0.0fs,' % np.average(times0), '%0.0fs,' % np.average(times1),
              '| alpha, lam: {v1}'.format(v1=', '.join([str(lam) for lam in [p['alpha'], p['lambda']]])),
              '| model: {v1}'.format(v1=model_name))

        # ----------------------------------------------------------------------------------------------------------
        if epoch == p['epochs'] - 1:
            # 保存最优值、所有的损失值。
            print("\tBest and losses saving ...")
            path = os.path.join(os.path.split(__file__)[0], '..', 'Results_best_and_losses', PATH.split('/')[-2])
            fun_save_best_and_losses(path, model_name, epoch, p, best, losses)

    for i in p.items():
        print(i)
    print('\t the current Class name is: {val}'.format(val=model_name))
コード例 #5
0
ファイル: prog_gru_owm.py プロジェクト: cshaowang/MV-GRU
def train_valid_or_test():
    """
    主程序
    :return:
    """
    # 建立参数、数据、模型、模型最佳值
    pas = Params()
    p = pas.p
    model, model_name, size_total = pas.build_model_mini_batch(flag=p['mvgru'])
    best = GlobalBest(at_nums=p['at_nums'], intervals=p['intervals'])  # 存放最优数据
    batch_idxs_tra, starts_ends_tra = pas.compute_start_end(flag='train')
    _, starts_ends_tes = pas.compute_start_end(flag='test')
    _, starts_ends_auc = pas.compute_start_end(flag='auc')

    # 直接取出来部分变量,后边就不用加'pas.'了。
    user_num, item_num = pas.user_num, pas.item_num
    tra_buys_masks, tes_buys_masks = pas.tra_buys_masks, pas.tes_buys_masks
    tes_masks = pas.tes_masks
    test_i_cou, test_i_intervals_cumsum, test_i_cold_active = pas.tic, pas.tiic, pas.tica
    del pas

    # 主循环
    losses = []
    times0, times1, times2 = [], [], []
    for epoch in np.arange(p['epochs']):
        print(
            "Epoch {val} ==================================".format(val=epoch))
        # 每次epoch,都要重新选择负样本。都要把数据打乱重排,这样会以随机方式选择样本计算梯度,可得到精确结果
        if epoch > 0:  # epoch=0的负样本已在循环前生成,且已用于类的初始化
            tra_buys_neg_masks = fun_random_neg_tra(item_num, tra_buys_masks)
            tes_buys_neg_masks = fun_random_neg_tes(item_num, tra_buys_masks,
                                                    tes_buys_masks)
            model.update_neg_masks(tra_buys_neg_masks, tes_buys_neg_masks)

        # --------------------------------------------------------------------------------------------------------------
        print("\tTraining ...")
        t0 = time.time()
        loss = 0.
        random.seed(str(123 + epoch))
        random.shuffle(batch_idxs_tra)  # 每个epoch都打乱batch_idx输入顺序
        for bidx in batch_idxs_tra:
            start_end = starts_ends_tra[bidx]
            random.shuffle(start_end)  # 打乱batch内的indexes
            loss += model.train(start_end)
        rnn_l2_sqr = model.l2.eval()  # model.l2是'TensorVariable',无法直接显示其值
        print('\t\tsum_loss = {val} = {v1} + {v2}'.format(val=loss +
                                                          rnn_l2_sqr,
                                                          v1=loss,
                                                          v2=rnn_l2_sqr))
        losses.append('%0.2f' % (loss + rnn_l2_sqr))
        t1 = time.time()
        times0.append(t1 - t0)

        # --------------------------------------------------------------------------------------------------------------
        print("\tPredicting ...")
        # 计算:所有用户、商品的表达
        model.update_trained_items()  # 要先运行这个更新items特征。对于MV-GRU,这里会先算出来图文融合特征。
        all_hus = np.array([[0.0 for _ in np.arange(size_total)]
                            ])  # 初始shape=(1, 20/40)
        for start_end in starts_ends_tes:
            sub_all_hus = model.predict(start_end)
            all_hus = np.concatenate((all_hus, sub_all_hus))
        all_hus = np.delete(all_hus, 0,
                            axis=0)  # 去除第一行全0项,  # shape=(n_user, n_hidden)
        model.update_trained_users(all_hus)
        # 特别注意:别漏了这句。
        model.update_trained_items_by_vy()
        t2 = time.time()
        times1.append(t2 - t1)

        # 计算各种指标,并输出当前最优值。
        fun_predict_auc_recall_map_ndcg(p, model, best, epoch, starts_ends_auc,
                                        starts_ends_tes, tes_buys_masks,
                                        tes_masks, test_i_cou,
                                        test_i_intervals_cumsum,
                                        test_i_cold_active)
        best.fun_print_best(epoch)  # 每次都只输出当前最优的结果
        t3 = time.time()
        times2.append(t3 - t2)
        print(
            '\taverage time (train, user, evaluate): %0.2fs,' %
            np.average(times0), '%0.2fs,' % np.average(times1),
            '%0.2fs,' % np.average(times2),
            datetime.datetime.now().strftime("%Y.%m.%d %H:%M:%S"),
            '| model: %s' % model_name, '| lam: %s' % ', '.join([
                str(lam)
                for lam in [p['lambda'], p['lambda_ev'], p['lambda_ae']]
            ]))

        # --------------------------------------------------------------------------------------------------------------
        # 保存epoch=29/49时的最优值。
        if epoch == p['epochs'] - 1:
            print("\tBest saving ...")
            path = os.path.join(
                os.path.split(__file__)[0], '..', 'Results_best_values',
                PATH.split('/')[-2])
            best.fun_save_best(path, model_name, epoch,
                               [p['batch_size_train'], p['batch_size_test']], [
                                   p['alpha'], p['lambda'], p['lambda_ev'],
                                   p['lambda_ae'], p['fea_random_zero']
                               ])

        # --------------------------------------------------------------------------------------------------------------
        # 保存所有的损失值。
        if epoch == p['epochs'] - 1:
            print("\tLoss saving ...")
            path = os.path.join(
                os.path.split(__file__)[0], '..', 'Results_alpha_0.1_loss',
                PATH.split('/')[-2])
            fun_save_all_losses(path, model_name, epoch, losses, [
                p['alpha'], p['lambda'], p['lambda_ev'], p['lambda_ae'],
                p['fea_random_zero']
            ])

    for i in p.items():
        print(i)
    print('\t the current Class name is: {val}'.format(val=model_name))
コード例 #6
0
def train_valid_or_test():
    """
    主程序
    :return:
    """
    # 建立参数、数据、模型、模型最佳值
    pas = Params()
    p = pas.p
    model, model_name = pas.build_model_one_by_one(flag=p['gru'])
    best = GlobalBest(at_nums=p['at_nums'])  # 存放最优数据
    _, starts_ends_tes = pas.compute_start_end(flag='test')
    _, starts_ends_auc = pas.compute_start_end(flag='test_auc')

    # 直接取出来部分变量,后边就不用加'pas.'了。
    user_num, item_num, dist_num = pas.user_num, pas.item_num, pas.dist_num
    tra_buys_masks, tra_masks, tra_buys_neg_masks = pas.tra_buys_masks, pas.tra_masks, pas.tra_buys_neg_masks
    tes_buys_masks, tes_masks, tes_buys_neg_masks = pas.tes_buys_masks, pas.tes_masks, pas.tes_buys_neg_masks
    dd = p['dd']
    pois_cordis = pas.pois_cordis
    ulptai = pas.ulptai
    del pas

    # 主循环
    losses = []
    wds = []
    times0, times1, times2, times3 = [], [], [], []
    for epoch in np.arange(p['epochs']):
        print(
            "Epoch {val} ==================================".format(val=epoch))
        # 每次epoch,都要重新选择负样本。都要把数据打乱重排,这样会以随机方式选择样本计算梯度,可得到精确结果
        if epoch > 0:  # epoch=0的负样本已在循环前生成,且已用于类的初始化
            tra_buys_neg_masks = fun_random_neg_masks_tra(
                item_num, tra_buys_masks)
            tes_buys_neg_masks = fun_random_neg_masks_tes(
                item_num, tra_buys_masks, tes_buys_masks)
            if p['gru'] in [0, 1]:
                model.update_neg_masks(tra_buys_neg_masks, tes_buys_neg_masks)
            else:
                tra_dist_neg_masks = fun_compute_dist_neg(
                    tra_buys_masks, tra_masks, tra_buys_neg_masks, pois_cordis,
                    dd, dist_num)
                model.s_update_neg_masks(tra_buys_neg_masks,
                                         tes_buys_neg_masks,
                                         tra_dist_neg_masks)

        # ----------------------------------------------------------------------------------------------------------
        print("\tTraining ...")
        t0 = time.time()
        loss = 0.
        random.seed(str(123 + epoch))
        user_idxs_tra = np.arange(user_num, dtype=np.int32)
        random.shuffle(user_idxs_tra)  # 每个epoch都打乱user_id输入顺序
        if 0 == p['gru']:
            for uidx in user_idxs_tra:
                tra = tra_buys_masks[uidx]
                neg = tra_buys_neg_masks[uidx]
                for i in np.arange(sum(tra_masks[uidx])):
                    loss += model.train(uidx, [tra[i], neg[i]])
        else:
            for uidx in user_idxs_tra:
                loss += model.train(uidx)

        rnn_l2_sqr = model.l2.eval()  # model.l2是'TensorVariable',无法直接显示其值
        # 把loss及loss_weight保存下来.
        wd = model.wd.eval()
        print('\t\twd = {v1}'.format(v1=wd))
        print('\t\tsum_loss = {val} = {v1} + {v2}'.format(val=loss +
                                                          rnn_l2_sqr,
                                                          v1=loss,
                                                          v2=rnn_l2_sqr))
        losses.append('{v1}'.format(v1=int(loss + rnn_l2_sqr)))
        wds.append('{v1}'.format(v1=wd))
        t1 = time.time()
        times0.append(t1 - t0)

        # ----------------------------------------------------------------------------------------------------------
        print("\tPredicting ...")
        # 计算:所有用户、商品的表达
        if 0 == p['gru']:
            model.update_trained_items()
            model.update_trained_users()
        elif 1 == p['gru']:
            model.update_trained_items()  # 对于MV-GRU,这里会先算出来图文融合特征。
            all_hus = []
            for start_end in starts_ends_tes:
                sub_all_hus = model.predict(start_end)
                all_hus.extend(sub_all_hus)
            model.update_trained_users(all_hus)
        else:
            model.update_trained_items()
            model.update_trained_dists()
            all_hus = []
            all_sus = []
            for start_end in starts_ends_tes:
                [sub_all_hus, sub_all_sus] = model.predict(start_end)
                all_hus.extend(sub_all_hus)
                all_sus.extend(sub_all_sus)
            probs = fun_acquire_prob(
                all_sus, ulptai,
                dist_num)  # 输入shape=(user_num, dist_num), (user_num, item_num)
            model.update_trained_users(all_hus)
            model.update_prob(probs)
        t2 = time.time()
        times1.append(t2 - t1)

        # 计算各种指标,并输出当前最优值。
        fun_predict_auc_recall_map_ndcg(p, model, best, epoch, starts_ends_auc,
                                        starts_ends_tes, tes_buys_masks,
                                        tes_masks)
        best.fun_print_best(epoch)  # 每次都只输出当前最优的结果
        t3 = time.time()
        times2.append(t3 - t2)
        print(
            '\tavg. time (train, user, test): %0.0fs,' % np.average(times0),
            '%0.0fs,' % np.average(times1), '%0.0fs' % np.average(times2),
            '| alpha, lam: {v1}'.format(
                v1=', '.join([str(lam) for lam in [p['alpha'], p['lambda']]])),
            '| model: {v1}'.format(v1=model_name))

        # ----------------------------------------------------------------------------------------------------------
        if epoch in [p['epochs'] - 1, 99]:
            # 保存最优值、所有的损失值。
            print("\tBest and losses saving ...")
            path = os.path.join(
                os.path.split(__file__)[0], '..', 'Results_best_and_losses',
                PATH.split('/')[-2])
            fun_save_best_and_losses(path, model_name, epoch, p, best,
                                     [losses, wds])

    for i in p.items():
        print(i)
    print('\t the current Class name is: {val}'.format(val=model_name))
コード例 #7
0
ファイル: pop_random.py プロジェクト: sunshiding/MV-RNN
def train_valid_or_test(p=None):
    """
    构建模型参数,加载数据
        把前80%分为6:2用作train和valid,来选择超参数, 不用去管剩下的20%.
        把前80%作为train,剩下的是test,把valid时学到的参数拿过来跑程序.
        valid和test部分,程序是一样的,区别在于送入的数据而已。
    :param p: 一个标示符,没啥用
    :return:
    """
    global PATH
    # 1. 建立各参数。要调整的地方都在 p 这了,其它函数都给写死。
    if not p:
        t = 't'  # 写1就是valid, 写0就是test
        assert 't' == t or 'v' == t  # no other case
        p = OrderedDict([
            ('dataset', 'user_buys.txt'),
            ('fea_image', 'normalized_features_image/'),
            ('fea_text', 'normalized_features_text/'),
            ('mode', 'test' if 't' == t else 'valid'),
            ('split', [0.8, 1.0]
             if 't' == t else [0.6, 0.8]),  # valid: 6/2/2。test: 8/2.
            ('at_nums', [10, 20, 30, 50]),  # 5, 15
            ('intervals', [2, 10,
                           30]),  # 以次数2为间隔,分为10个区间. 计算auc/recall@30上的. 换为10
            ('batch_size_train', 4),  # size大了之后性能下降非常严重
            ('batch_size_test', 768),  # user*item矩阵太大,要多次计算。a5下亲测768最快。
        ])
        for e in p.items():
            print(e)
        assert 'valid' == p['mode'] or 'test' == p['mode']

    # 2. 加载数据
    # 因为train/set里每项的长度不等,无法转换为完全的(n, m)矩阵样式,所以shared会报错.
    [(user_num, item_num), aliases_dict,
     (test_i_cou, test_i_intervals_cumsum, test_i_cold_active),
     (tra_buys, tes_buys), (set_tra, set_tes)] = \
        load_data(os.path.join(PATH, p['dataset']), p['mode'], p['split'], p['intervals'])
    # 正样本加masks
    tra_buys_masks, tra_masks = fun_data_buys_masks(tra_buys,
                                                    tail=[item_num
                                                          ])  # 预测时算用户表达用
    tes_buys_masks, tes_masks = fun_data_buys_masks(tes_buys,
                                                    tail=[item_num])  # 预测时用
    # 负样本加masks
    # tra_buys_neg_masks = fun_random_neg_masks_tra(item_num, tra_buys_masks)   # 训练时用(逐条、mini-batch均可)
    tes_buys_neg_masks = fun_random_neg_masks_tes(item_num, tra_buys_masks,
                                                  tes_buys_masks)  # 预测时用

    # --------------------------------------------------------------------------------------------------------------
    # 获得按购买次数由大到小排序的items, 出现次数相同的,随机排列。
    tra = []
    for buy in tra_buys:
        tra.extend(buy)
    train_i = set(tra)
    train_i_cou = dict(Counter(tra))  # {item: num, }, 各个item出现的次数
    lst = defaultdict(list)
    for item, count in train_i_cou.items():
        lst[count].append(item)
    # 某个被购买次数(count)下各有哪些商品,商品数目是count。count越大,这些items越popular
    lst = list(lst.items())  # [(num, [item1, item2, ...]), ]
    lst = list(sorted(lst, key=lambda x: x[0]))[::-1]  # 被购买次数多的,出现在首端
    sequence = []
    for count, items in lst:
        sequence.extend(random.sample(items, len(items)))  # 某个购买次数下的各商品,随机排列。

    def fun_judge_tes_and_neg(tes_mark_neg):
        tes, mark, tes_neg, _ = tes_mark_neg
        zero_one = []
        for idx, flag in enumerate(mark):
            if 0 == flag:
                zero_one.append(0)
            else:
                i, j = tes[idx], tes_neg[idx]
                if i in train_i and j in train_i:
                    zero_one.append(
                        1 if train_i_cou[i] > train_i_cou[j] else 0)
                elif i in train_i and j not in train_i:
                    zero_one.append(1)
                elif i not in train_i and j in train_i:
                    zero_one.append(0)
                else:
                    zero_one.append(0)
        return zero_one  # 与mask等长的0/1序列。1表示用户买的商品比负样本更流行。

    # --------------------------------------------------------------------------------------------------------------
    print("\tPop ...")
    append = [[0] for _ in np.arange(len(tes_buys_masks))]
    all_upqs = np.apply_along_axis(  # 判断tes里的是否比tes_neg更流行
        func1d=fun_judge_tes_and_neg,
        axis=1,
        arr=np.array(zip(tes_buys_masks, tes_masks, tes_buys_neg_masks,
                         append)))
    recom = sequence[:p['at_nums'][-1]]  # 每个用户都给推荐前100个最流行的
    all_ranks = np.array([recom for _ in np.arange(user_num)])

    # 存放最优数据。计算各种指标并输出。
    best = GlobalBest(at_nums=p['at_nums'], intervals=p['intervals'])
    fun_predict_pop_random(p, best, all_upqs, all_ranks, tes_buys_masks,
                           tes_masks, test_i_cou, test_i_intervals_cumsum,
                           test_i_cold_active)
    best.fun_print_best(epoch=0)  # 每次都只输出当前最优的结果

    # --------------------------------------------------------------------------------------------------------------
    print("\tRandom ...")
    all_upqs = None  # random的auc就是0.5,直接引用文献里的说法。
    seq_random = sample(sequence, len(sequence))  # 先把总序列打乱顺序。再每个用户都给随机推荐100个
    all_ranks = np.array(
        [sample(seq_random, p['at_nums'][-1]) for _ in np.arange(user_num)])

    # 存放最优数据。计算各种指标并输出。
    best = GlobalBest(at_nums=p['at_nums'], intervals=p['intervals'])
    fun_predict_pop_random(p, best, all_upqs, all_ranks, tes_buys_masks,
                           tes_masks, test_i_cou, test_i_intervals_cumsum,
                           test_i_cold_active)
    best.fun_print_best(epoch=0)  # 每次都只输出当前最优的结果
コード例 #8
0
def train_valid_or_test(pas):
    """
    主程序
    :return:
    """
    p = pas.p
    model, model_name = pas.build_model_one_by_one(flag=p['GeoIE'])
    best = GlobalBest(at_nums=p['at_nums'])
    _, starts_ends_tes = pas.compute_start_end(flag='test')
    _, starts_ends_auc = pas.compute_start_end(flag='test_auc')

    user_num, item_num = pas.user_num, pas.item_num
    tra_masks, tes_masks = pas.tra_masks, pas.tes_masks
    tra_buys_masks, tes_buys_masks = pas.tra_buys_masks, pas.tes_buys_masks
    tra_dist_pos_masks, tra_dist_neg_masks, tra_dist_masks = pas.tra_dist_pos_masks, pas.tra_dist_neg_masks, pas.tra_dist_masks

    pois_cordis = pas.pois_cordis
    del pas

    # 主循环
    losses = []
    times0, times1, times2, times3 = [], [], [], []
    for epoch in np.arange(0, p['epochs']):
        print(
            "Epoch {val} ==================================".format(val=epoch))
        if epoch > 0:
            tra_buys_neg_masks = fun_random_neg_masks_tra(
                item_num, tra_buys_masks)

            tra_dist_pos_masks, tra_dist_neg_masks, tra_dist_masks = fun_compute_dist_neg(
                tra_buys_masks, tra_masks, tra_buys_neg_masks, pois_cordis)

        # ----------------------------------------------------------------------------------------------------------
        print("\tTraining ...")
        t0 = time.time()
        loss = 0.
        ls = [0, 0]
        total_ls = []
        random.seed(str(123 + epoch))
        user_idxs_tra = np.arange(user_num, dtype=np.int32)
        random.shuffle(user_idxs_tra)
        for uidx in user_idxs_tra:
            print(model.a.eval(), model.b.eval())
            dist_pos = tra_dist_pos_masks[uidx]
            dist_neg = tra_dist_neg_masks[uidx]
            msk = tra_dist_masks[uidx]
            tmp = model.train(uidx, dist_pos, dist_neg, msk)
            loss += tmp
            print(tmp)
        rnn_l2_sqr = model.l2.eval()

        def cut2(x):
            return '%0.2f' % x

        print('\t\tsum_loss = {val} = {v1} + {v2}'.format(val=loss +
                                                          rnn_l2_sqr,
                                                          v1=loss,
                                                          v2=rnn_l2_sqr))
        losses.append('{v1}'.format(v1=int(loss + rnn_l2_sqr)))
        # ls = model.loss_weight
        print('\t\tloss_weight = {v1}, {v2}'.format(v1=ls[0], v2=ls[1]))
        t1 = time.time()
        times0.append(t1 - t0)

        # ----------------------------------------------------------------------------------------------------------
        print("\tPredicting ...")
        model.update_trained()
        t2 = time.time()
        times1.append(t2 - t1)

        fun_predict_auc_recall_map_ndcg(p, model, best, epoch, starts_ends_auc,
                                        starts_ends_tes, tes_buys_masks,
                                        tes_masks)
        best.fun_print_best(epoch)
        t3 = time.time()
        times2.append(t3 - t2)
        print(
            '\tavg. time (train, user, test): %0.0fs,' % np.average(times0),
            '%0.0fs,' % np.average(times1), '%0.0fs' % np.average(times2),
            '| alpha, lam: {v1}'.format(
                v1=', '.join([str(lam) for lam in [p['alpha'], p['lambda']]])),
            '| model: {v1}'.format(v1=model_name))

        # ----------------------------------------------------------------------------------------------------------
        if epoch == p['epochs'] - 1:
            print("\tBest and losses saving ...")
            path = os.path.join(
                os.path.split(__file__)[0], '..', 'Results_best_and_losses',
                PATH.split('/')[-2])
            fun_save_best_and_losses(path, model_name, epoch, p, best, losses)
            if 2 == p['gru']:
                size = p['latent_size']
                fil_name = 'size' + str(size) + 'UD' + str(
                    p['UD']) + 'dd' + str(p['dd']) + 'loss.txt'
                fil = os.path.join(path, fil_name)
                np.savetxt(fil, total_ls)

        if 2 == p['gru'] and epoch % p['save_per_epoch'] == 0 and epoch != 0:
            m_path = './model/' + p['dataset'] + '/' + model_name + '_size' + \
                     str(p['latent_size']) + '_UD' + str(p['UD']) + '_dd' + str(p['dd']) + '_epoch' + str(epoch)
            with open(m_path, 'wb') as file:
                save_model = [
                    model.loss_weight.get_value(),
                    model.wd.get_value(),
                    model.lt.get_value(),
                    model.di.get_value(),
                    model.ui.get_value(),
                    model.wh.get_value(),
                    model.bi.get_value(),
                    model.vs.get_value(),
                    model.bs.get_value()
                ]
                cPickle.dump(save_model,
                             file,
                             protocol=cPickle.HIGHEST_PROTOCOL)

    for i in p.items():
        print(i)
    print('\t the current Class name is: {val}'.format(val=model_name))
コード例 #9
0
ファイル: prog_hca_gru_zoneout.py プロジェクト: zwcdp/HCA
def train_valid_or_test():
    """
    主程序
    :return:
    """
    # 建立参数、数据、模型、模型最佳值
    pas = Params()
    p = pas.p
    model, model_name, size = pas.build_model_one_by_one(flag=p['hcagru'])
    best = GlobalBest(at_nums=p['at_nums'])  # 存放最优数据
    batch_idxs_tra, starts_ends_tra = pas.compute_start_end(flag='train')
    _, starts_ends_tes = pas.compute_start_end(flag='test')
    _, starts_ends_auc = pas.compute_start_end(flag='test_auc')

    # 直接取出来部分变量,后边就不用加'pas.'了。
    user_num, item_num = pas.user_num, pas.item_num
    tra_buys_masks, tra_masks, tra_buys_neg_masks = pas.tra_buys_masks, pas.tra_masks, pas.tra_buys_neg_masks
    tes_buys_masks, tes_masks, tes_buys_neg_masks = pas.tes_buys_masks, pas.tes_masks, pas.tes_buys_neg_masks
    del pas

    # 主循环
    losses = []
    times0, times1, times2, times3 = [], [], [], []
    for epoch in np.arange(p['epochs']):
        print(
            "Epoch {val} ==================================".format(val=epoch))
        # 每次epoch,都要重新选择负样本。都要把数据打乱重排,这样会以随机方式选择样本计算梯度,可得到精确结果
        if epoch > 0:  # epoch=0的负样本已在循环前生成,且已用于类的初始化
            tra_buys_neg_masks = fun_random_neg_masks_tra(
                item_num, tra_buys_masks)
            tes_buys_neg_masks = fun_random_neg_masks_tes(
                item_num, tra_buys_masks, tes_buys_masks)
            model.update_neg_masks(tra_buys_neg_masks, tes_buys_neg_masks)

        # ----------------------------------------------------------------------------------------------------------
        print("\tTraining ...")
        t0 = time.time()
        loss = 0.
        random.seed(str(123 + epoch))
        if 0 == p['mini_batch']:
            user_idxs_tra = np.arange(user_num, dtype=np.int32)
            random.shuffle(user_idxs_tra)  # 每个epoch都打乱user_id输入顺序
            for uidx in user_idxs_tra:
                loss += model.train(uidx)
        else:
            random.shuffle(batch_idxs_tra)  # 每个epoch都打乱batch_idx输入顺序
            for bidx in batch_idxs_tra:
                start_end = starts_ends_tra[bidx]
                random.shuffle(start_end)  # 打乱batch内的indexes
                loss += model.train(start_end)
        rnn_l2_sqr = model.l2.eval()  # model.l2是'TensorVariable',无法直接显示其值
        print('\t\tsum_loss = {val} = {v1} + {v2}'.format(val=loss +
                                                          rnn_l2_sqr,
                                                          v1=loss,
                                                          v2=rnn_l2_sqr))
        losses.append('{v1}'.format(v1=int(loss + rnn_l2_sqr)))
        t1 = time.time()
        times0.append(t1 - t0)

        # ----------------------------------------------------------------------------------------------------------
        # 计算:所有用户、商品的表达
        model.update_trained_items()  # 对于MV-GRU,这里会先算出来图文融合特征。
        all_hus, all_ats = [], []
        if model_name in ['OboHcaGru', 'HcaGru']:  # 只对完整的HcaGru做权重计算、保存
            for start_end in starts_ends_tes:
                sub_all_hus, sub_all_ats = model.predict(start_end)
                all_hus.extend(sub_all_hus)
                all_ats.extend(sub_all_ats)
        else:  # HcaX, HcaH
            for start_end in starts_ends_tes:
                sub_all_hus = model.predict(start_end)
                all_hus.extend(sub_all_hus)
        model.update_trained_users(all_hus)
        t2 = time.time()
        times1.append(t2 - t1)

        # ----------------------------------------------------------------------------------------------------------
        # if epoch >= 85 or (epoch % 10) == 9:
        if 0 == epoch % 4 or epoch >= (p['epochs'] - 15):
            print("\tPredicting ...")
            # 计算各种指标,并输出当前最优值。
            fun_predict_auc_recall_map_ndcg(p, model, best, epoch,
                                            starts_ends_auc, starts_ends_tes,
                                            tes_buys_masks, tes_masks)
            best.fun_print_best(epoch)  # 每次都只输出当前最优的结果
            t3 = time.time()
            times2.append(t3 - t2)
            print(
                '\tavg. time (train, user, test): %0.0fs,' %
                np.average(times0), '%0.0fs,' % np.average(times1),
                '%0.0fs' % np.average(times2),
                '| alpha, lam: {v1}'.format(v1=', '.join(
                    [str(lam) for lam in [p['alpha'], p['lambda']]])),
                '| model: {v1}, x{v2}_h{v3}'.format(v1=model_name,
                                                    v2=p['window_x'],
                                                    v3=p['window_h']))

        # ----------------------------------------------------------------------------------------------------------
        if epoch == p['epochs'] - 1:
            # 保存所有用户的attention权重值。
            # 取数据集的前三列基本信息作为权重文件的前三列,权重在后边的列里
            if model_name in ['OboHcaGru', 'HcaGru']:
                print("\tAttention Weights saving ...")
                path = os.path.join(
                    os.path.split(__file__)[0], '..',
                    'Results_attention_weights',
                    PATH.split('/')[-2])
                fun_save_atts(path, model_name, epoch, p, best, all_ats,
                              os.path.join(PATH, p['dataset']))
            # 保存最优值、所有的损失值。
            print("\tBest and losses saving ...")
            path = os.path.join(
                os.path.split(__file__)[0], '..', 'Results_best_and_losses',
                PATH.split('/')[-2])
            fun_save_best_and_losses(path, model_name, epoch, p, best, losses)

    for i in p.items():
        print(i)
    print('\t the current Class name is: {val}'.format(val=model_name))