コード例 #1
0
def test_build():
    reg_ = Register.rectangle(2, 1, prefix="q")
    sb = Sequence(reg_, device)
    var = sb.declare_variable("var")
    targ_var = sb.declare_variable("targ_var", size=2, dtype=int)
    sb.declare_channel("ch1", "rydberg_local")
    sb.declare_channel("ch2", "raman_local")
    sb.target_index(targ_var[0], "ch2")
    sb.target_index(targ_var[1], "ch1")
    wf = BlackmanWaveform(var * 100, np.pi)
    pls = Pulse.ConstantDetuning(wf, var, var)
    sb.add(pls, "ch1")
    sb.delay(var * 50, "ch1")
    sb.align("ch2", "ch1")
    sb.phase_shift_index(var, targ_var[0])
    pls2 = Pulse.ConstantPulse(var * 100, var, var, 0)
    sb.add(pls2, "ch2")
    sb.measure()
    with pytest.warns(UserWarning, match="No declared variables"):
        sb.build(t=100, var=2, targ_var=reg_.find_indices(["q1", "q0"]))
    with pytest.raises(TypeError, match="Did not receive values for"):
        sb.build(var=2)
    seq = sb.build(var=2, targ_var=reg_.find_indices(["q1", "q0"]))
    assert seq._schedule["ch2"][-1].tf == 500
    assert seq.current_phase_ref("q1") == 2.0
    assert seq.current_phase_ref("q0") == 0.0
    assert seq._measurement == "ground-rydberg"

    s = sb.serialize()
    sb_ = Sequence.deserialize(s)
    assert str(sb) == str(sb_)

    s2 = sb_.serialize()
    sb_2 = Sequence.deserialize(s2)
    assert str(sb) == str(sb_2)
コード例 #2
0
def test_single_atom_simulation():
    one_reg = Register.from_coordinates([(0, 0)], 'atom')
    one_seq = Sequence(one_reg, Chadoq2)
    one_seq.declare_channel('ch0', 'rydberg_global')
    one_seq.add(Pulse.ConstantDetuning(ConstantWaveform(16, 1.), 1., 0), 'ch0')
    one_sim = Simulation(seq)
    one_res = one_sim.run()
    assert (one_res._size == one_sim._size)
コード例 #3
0
def test_add_max_step_and_delays():
    reg = Register.from_coordinates([(0, 0)])
    seq = Sequence(reg, Chadoq2)
    seq.declare_channel("ch", "rydberg_global")
    seq.delay(1500, "ch")
    seq.add(Pulse.ConstantDetuning(BlackmanWaveform(600, np.pi), 0, 0), "ch")
    seq.delay(2000, "ch")
    seq.add(Pulse.ConstantDetuning(BlackmanWaveform(600, np.pi / 2), 0, 0),
            "ch")
    sim = Simulation(seq)
    res_large_max_step = sim.run(max_step=1)
    res_auto_max_step = sim.run()
    r = qutip.basis(2, 0)
    occ_large = res_large_max_step.expect([r.proj()])[0]
    occ_auto = res_auto_max_step.expect([r.proj()])[0]
    assert np.isclose(occ_large[-1], 0, 1e-4)
    assert np.isclose(occ_auto[-1], 0.5, 1e-4)
コード例 #4
0
def test_single_atom_simulation():
    one_reg = Register.from_coordinates([(0, 0)], "atom")
    one_seq = Sequence(one_reg, Chadoq2)
    one_seq.declare_channel("ch0", "rydberg_global")
    one_seq.add(Pulse.ConstantDetuning(ConstantWaveform(16, 1.0), 1.0, 0),
                "ch0")
    one_sim = Simulation(one_seq)
    one_res = one_sim.run()
    assert one_res._size == one_sim._size
    one_sim = Simulation(one_seq, evaluation_times="Minimal")
    one_resb = one_sim.run()
    assert one_resb._size == one_sim._size
コード例 #5
0
def test_get_hamiltonian():
    simple_reg = Register.from_coordinates([[10, 0], [0, 0]], prefix='atom')
    detun = 1.
    rise = Pulse.ConstantDetuning(RampWaveform(1500, 0., 2.), detun, 0.)
    simple_seq = Sequence(simple_reg, Chadoq2)
    simple_seq.declare_channel('ising', 'rydberg_global')
    simple_seq.add(rise, 'ising')

    simple_sim = Simulation(simple_seq, sampling_rate=0.01)
    with pytest.raises(ValueError, match='larger than'):
        simple_sim.get_hamiltonian(1650)
    with pytest.raises(ValueError, match='negative'):
        simple_sim.get_hamiltonian(-10)
    # Constant detuning, so |rr><rr| term is C_6/r^6 - 2*detuning for any time
    simple_ham = simple_sim.get_hamiltonian(143)
    assert (simple_ham[0, 0] == Chadoq2.interaction_coeff / 10**6 - 2 * detun)
コード例 #6
0
def test_get_hamiltonian():
    simple_reg = Register.from_coordinates([[10, 0], [0, 0]], prefix="atom")
    detun = 1.0
    rise = Pulse.ConstantDetuning(RampWaveform(1500, 0.0, 2.0), detun, 0.0)
    simple_seq = Sequence(simple_reg, Chadoq2)
    simple_seq.declare_channel("ising", "rydberg_global")
    simple_seq.add(rise, "ising")

    simple_sim = Simulation(simple_seq, sampling_rate=0.01)
    with pytest.raises(ValueError, match="less than or equal to"):
        simple_sim.get_hamiltonian(1650)
    with pytest.raises(ValueError, match="greater than or equal to"):
        simple_sim.get_hamiltonian(-10)
    # Constant detuning, so |rr><rr| term is C_6/r^6 - 2*detuning for any time
    simple_ham = simple_sim.get_hamiltonian(143)
    assert np.isclose(simple_ham[0, 0],
                      Chadoq2.interaction_coeff / 10**6 - 2 * detun)

    np.random.seed(123)
    simple_sim_noise = Simulation(simple_seq,
                                  config=SimConfig(noise="doppler",
                                                   temperature=20000))
    simple_ham_noise = simple_sim_noise.get_hamiltonian(144)
    assert np.isclose(
        simple_ham_noise.full(),
        np.array([
            [
                4.47984523 + 0.0j,
                0.09606404 + 0.0j,
                0.09606404 + 0.0j,
                0.0 + 0.0j,
            ],
            [
                0.09606404 + 0.0j,
                12.03082372 + 0.0j,
                0.0 + 0.0j,
                0.09606404 + 0.0j,
            ],
            [
                0.09606404 + 0.0j,
                0.0 + 0.0j,
                -12.97113702 + 0.0j,
                0.09606404 + 0.0j,
            ],
            [0.0 + 0.0j, 0.09606404 + 0.0j, 0.09606404 + 0.0j, 0.0 + 0.0j],
        ]),
    ).all()
コード例 #7
0
def test_results_xy():
    q_dict = {
        "A": np.array([0.0, 0.0]),
        "B": np.array([0.0, 10.0]),
    }
    reg = Register(q_dict)
    duration = 1000
    pi = Pulse.ConstantDetuning(BlackmanWaveform(duration, np.pi), 0.0, 0)
    seq = Sequence(reg, MockDevice)

    # Declare Channels
    seq.declare_channel("ch0", "mw_global")
    seq.add(pi, "ch0")
    seq.measure("XY")

    sim = Simulation(seq)
    results = sim.run()

    ground = qutip.tensor([qutip.basis(2, 1), qutip.basis(2, 1)])

    assert results._dim == 2
    assert results._size == 2
    assert results._basis_name == "XY"
    assert results._meas_basis == "XY"
    assert results.states[0] == ground

    with pytest.raises(TypeError, match="Can't reduce a system in"):
        results.get_final_state(reduce_to_basis="all")

    with pytest.raises(TypeError, match="Can't reduce a system in"):
        results.get_final_state(reduce_to_basis="ground-rydberg")

    with pytest.raises(TypeError, match="Can't reduce a system in"):
        results.get_final_state(reduce_to_basis="digital")

    state = results.get_final_state(reduce_to_basis="XY")

    assert np.all(
        np.isclose(np.abs(state.full()),
                   np.abs(results.states[-1].full()),
                   atol=1e-5))

    # Check that measurement projectors are correct
    assert results._meas_projector(0) == qutip.basis(2, 1).proj()
    assert results._meas_projector(1) == qutip.basis(2, 0).proj()
コード例 #8
0
def test_draw():
    pls_ = Pulse.ConstantDetuning(bwf, -10, 1, post_phase_shift=-np.pi)
    with patch("matplotlib.pyplot.show"):
        pls_.draw()
コード例 #9
0
from unittest.mock import patch

import numpy as np
import pytest

from pulser import Pulse
from pulser.waveforms import BlackmanWaveform, ConstantWaveform, RampWaveform

cwf = ConstantWaveform(100, -10)
bwf = BlackmanWaveform(200, 3)
rwf = RampWaveform(200, 0, 1)

pls = Pulse(bwf, bwf, 2 * np.pi)
pls2 = Pulse.ConstantPulse(100, 1, -10, -np.pi)
pls3 = Pulse.ConstantAmplitude(1, cwf, -np.pi)
pls4 = Pulse.ConstantDetuning(bwf, -10, 0)


def test_creation():
    with pytest.raises(TypeError):
        Pulse(10, 0, 0, post_phase_shift=2)
        Pulse(cwf, 1, 0)
        Pulse(0, bwf, 1)
        Pulse(bwf, cwf, bwf)
        Pulse(bwf, cwf, 0, post_phase_shift=cwf)

    with pytest.raises(ValueError, match="The duration of"):
        Pulse(bwf, cwf, 0)

    with pytest.raises(ValueError, match="All samples of an amplitude"):
        Pulse(cwf, cwf, 0)
コード例 #10
0
import qutip

from pulser import Sequence, Pulse, Register, Simulation
from pulser.devices import Chadoq2
from pulser.waveforms import BlackmanWaveform

q_dict = {
    "control1": np.array([-4., 0.]),
    "target": np.array([0., 4.]),
    "control2": np.array([4., 0.])
}
reg = Register(q_dict)

duration = 1000
pi = Pulse.ConstantDetuning(BlackmanWaveform(duration, np.pi), 0., 0)
twopi = Pulse.ConstantDetuning(BlackmanWaveform(duration, 2 * np.pi), 0., 0)
pi_Y = Pulse.ConstantDetuning(BlackmanWaveform(duration, np.pi), 0.,
                              -np.pi / 2)

seq = Sequence(reg, Chadoq2)

# Declare Channels
seq.declare_channel('ryd', 'rydberg_local', 'control1')
seq.declare_channel('raman', 'raman_local', 'control1')

d = 0  # Pulse Duration

# Prepare state 'hhh':
seq.add(pi_Y, 'raman')
seq.target('target', 'raman')
コード例 #11
0
import numpy as np
import pytest

from pulser import Pulse
from pulser.json.coders import PulserDecoder, PulserEncoder
from pulser.parametrized import Variable
from pulser.waveforms import BlackmanWaveform, CompositeWaveform

a = Variable("a", float)
b = Variable("b", int, size=2)
b._assign([-1.5, 1.5])
d = Variable("d", float, size=1)
d._assign([0.5])
t = Variable("t", int)
bwf = BlackmanWaveform(t, a)
pulse = Pulse.ConstantDetuning(bwf, b[0], b[1])
pulse2 = Pulse(bwf, bwf, 1)


def test_var():
    with pytest.raises(TypeError, match="'name' has to be of type 'str'"):
        Variable(1, dtype=int)
    with pytest.raises(TypeError, match="Invalid data type"):
        Variable("x", dtype=list, size=4)
    with pytest.raises(TypeError, match="'size' is not of type 'int'"):
        Variable("x", dtype=float, size=(2, 2))
    with pytest.raises(ValueError, match="size 1 or larger"):
        Variable("x", dtype=int, size=0)
    x = Variable("x", dtype=float)
    assert x.value is None
    assert x._count == 0
コード例 #12
0
from dataclasses import FrozenInstanceError

import numpy as np
import pytest

from pulser import Pulse
from pulser.parametrized import Variable
from pulser.waveforms import BlackmanWaveform, CompositeWaveform

a = Variable("a", float)
b = Variable("b", int, size=2)
b._assign([-1.5, 1.5])
c = Variable("c", str)
t = Variable("t", int)
bwf = BlackmanWaveform(t, a)
pulse = Pulse.ConstantDetuning(bwf, *b)
pulse2 = Pulse(bwf, bwf, 1)


def test_var():
    with pytest.raises(TypeError, match="'name' has to be of type 'str'"):
        Variable(1, dtype=int)
    with pytest.raises(TypeError, match="Invalid data type"):
        Variable("x", dtype=list, size=4)
    with pytest.raises(TypeError, match="'size' is not of type 'int'"):
        Variable("x", dtype=float, size=(2, 2))
    with pytest.raises(ValueError, match="size 1 or larger"):
        Variable("x", dtype=str, size=0)
    x = Variable("x", dtype=float)
    assert x.value is None
    assert x._count == 0
コード例 #13
0
from pulser import Pulse, Register, Sequence
from pulser.devices import Chadoq2, MockDevice
from pulser.waveforms import BlackmanWaveform
from pulser_simulation import SimConfig, Simulation
from pulser_simulation.simresults import CoherentResults, NoisyResults

np.random.seed(123)
q_dict = {
    "A": np.array([0.0, 0.0]),
    "B": np.array([0.0, 10.0]),
}
reg = Register(q_dict)

duration = 1000
pi = Pulse.ConstantDetuning(BlackmanWaveform(duration, np.pi), 0.0, 0)

seq = Sequence(reg, Chadoq2)

# Declare Channels
seq.declare_channel("ryd", "rydberg_global")
seq.add(pi, "ryd")
seq_no_meas = deepcopy(seq)
seq_no_meas_noisy = deepcopy(seq)
seq.measure("ground-rydberg")

sim = Simulation(seq)
cfg_noisy = SimConfig(noise=("SPAM", "doppler", "amplitude"))
sim_noisy = Simulation(seq, config=cfg_noisy)
results = sim.run()
results_noisy = sim_noisy.run()
コード例 #14
0
def test_sequence():
    seq = Sequence(reg, device)
    with pytest.raises(SystemError, match='empty sequence'):
        seq.draw()
    seq.declare_channel('ch0', 'raman_local', initial_target='q0')
    seq.declare_channel('ch1', 'rydberg_local', initial_target='q0')
    seq.declare_channel('ch2', 'rydberg_global')
    seq.phase_shift(np.pi, 'q0', basis='ground-rydberg')

    pulse1 = Pulse.ConstantPulse(500, 2, -10, 0, post_phase_shift=np.pi)
    pulse2 = Pulse.ConstantDetuning(BlackmanWaveform(1e3, np.pi / 4),
                                    25,
                                    np.pi,
                                    post_phase_shift=1)
    with pytest.raises(TypeError):
        seq.add([1, 5, 3], 'ch0')
    with pytest.raises(ValueError, match='amplitude goes over the maximum'):
        seq.add(Pulse.ConstantPulse(20, 2 * np.pi * 10, -2 * np.pi * 100, 0),
                'ch2')
    with pytest.raises(ValueError,
                       match='detuning values go out of the range'):
        seq.add(Pulse.ConstantPulse(500, 2 * np.pi, -2 * np.pi * 100, 0),
                'ch0')
    with pytest.raises(ValueError, match='qubits with different phase ref'):
        seq.add(pulse2, 'ch2')
    with pytest.raises(ValueError, match='Invalid protocol'):
        seq.add(pulse1, 'ch0', protocol='now')

    seq.add(pulse1, 'ch0')
    seq.add(pulse1, 'ch1')
    seq.add(pulse2, 'ch2')

    assert seq._last('ch0').ti == 0
    assert seq._last('ch0').tf == seq._last('ch1').ti
    assert seq._last('ch2').tf == seq._last('ch2').ti + 1000
    assert seq.current_phase_ref('q0', 'digital') == np.pi

    seq.add(pulse1, 'ch2')
    assert seq._last('ch2').tf == 2500
    seq.add(pulse2, 'ch1', protocol='no-delay')
    assert seq._last('ch1').tf == 3500
    seq.add(pulse1, 'ch0', protocol='no-delay')
    assert seq._last('ch0').ti == 500
    assert seq._last('ch0').tf == 1000
    assert seq.current_phase_ref('q0', 'digital') == 0
    seq.phase_shift(np.pi / 2, 'q1')
    seq.target('q1', 'ch0')
    assert seq._last_used['digital']['q1'] == 0
    assert seq._last_target['ch0'] == 1000
    assert seq._last('ch0').ti == 1000
    assert seq._last('ch0').tf == 1000
    seq.add(pulse1, 'ch0')
    assert seq._last('ch0').ti == 2500
    assert seq._last('ch0').tf == 3000
    seq.add(pulse1, 'ch0', protocol='wait-for-all')
    assert seq._last('ch0').ti == 3500
    assert seq._last('ch2').tf != seq._last('ch0').tf
    seq.align('ch0', 'ch2')
    assert seq._last('ch2').tf == seq._last('ch0').tf

    with patch('matplotlib.pyplot.show'):
        seq.draw()

    assert seq._total_duration == 4000

    with pytest.raises(ValueError, match='not supported'):
        seq.measure(basis='computational')
    seq.measure(basis='digital')
    with pytest.raises(SystemError, match='already been measured'):
        seq.measure(basis='digital')
    with pytest.raises(SystemError, match='Nothing more can be added.'):
        seq.add(pulse1, 'ch0')

    with patch('matplotlib.pyplot.show'):
        seq.draw()
コード例 #15
0
def test_hardware_constraints():
    rydberg_global = Rydberg.Global(
        2 * np.pi * 20,
        2 * np.pi * 2.5,
        phase_jump_time=120,  # ns
        mod_bandwidth=4,  # MHz
    )

    raman_local = Raman.Local(
        2 * np.pi * 20,
        2 * np.pi * 10,
        phase_jump_time=120,  # ns
        fixed_retarget_t=200,  # ns
        mod_bandwidth=7,  # MHz
    )

    ConstrainedChadoq2 = Device(
        name="ConstrainedChadoq2",
        dimensions=2,
        rydberg_level=70,
        max_atom_num=100,
        max_radial_distance=50,
        min_atom_distance=4,
        _channels=(
            ("rydberg_global", rydberg_global),
            ("raman_local", raman_local),
        ),
    )
    with pytest.warns(UserWarning,
                      match="should be imported from 'pulser.devices'"):
        seq = Sequence(reg, ConstrainedChadoq2)
    seq.declare_channel("ch0", "rydberg_global")
    seq.declare_channel("ch1", "raman_local", initial_target="q1")

    const_pls = Pulse.ConstantPulse(100, 1, 0, np.pi)
    seq.add(const_pls, "ch0")
    black_wf = BlackmanWaveform(500, np.pi)
    black_pls = Pulse.ConstantDetuning(black_wf, 0, 0)
    seq.add(black_pls, "ch1")
    blackman_slot = seq._last("ch1")
    # The pulse accounts for the modulation buffer
    assert (blackman_slot.ti == const_pls.duration +
            rydberg_global.rise_time * 2)
    seq.target("q0", "ch1")
    target_slot = seq._last("ch1")
    fall_time = black_pls.fall_time(raman_local)
    assert (fall_time == raman_local.rise_time +
            black_wf.modulation_buffers(raman_local)[1])
    fall_time += (raman_local.clock_period -
                  fall_time % raman_local.clock_period)
    assert target_slot.ti == blackman_slot.tf + fall_time
    assert target_slot.tf == target_slot.ti + raman_local.fixed_retarget_t

    assert raman_local.min_retarget_interval > raman_local.fixed_retarget_t
    seq.target("q2", "ch1")
    assert (seq.get_duration("ch1") == target_slot.tf +
            raman_local.min_retarget_interval)

    # Check for phase jump buffer
    seq.add(black_pls, "ch0")  # Phase = 0
    tf_ = seq.get_duration("ch0")
    mid_delay = 40
    seq.delay(mid_delay, "ch0")
    seq.add(const_pls, "ch0")  # Phase = π
    assert seq._last("ch0").ti - tf_ == rydberg_global.phase_jump_time
    added_delay_slot = seq._schedule["ch0"][-2]
    assert added_delay_slot.type == "delay"
    assert (added_delay_slot.tf -
            added_delay_slot.ti == rydberg_global.phase_jump_time - mid_delay)

    tf_ = seq.get_duration("ch0")
    seq.align("ch0", "ch1")
    fall_time = const_pls.fall_time(rydberg_global)
    assert seq.get_duration() == tf_ + fall_time

    with pytest.raises(ValueError, match="'mode' must be one of"):
        seq.draw(mode="all")

    with patch("matplotlib.pyplot.show"):
        with pytest.warns(
                UserWarning,
                match="'draw_phase_area' doesn't work in 'output' mode",
        ):
            seq.draw(mode="output",
                     draw_interp_pts=False,
                     draw_phase_area=True)
        with pytest.warns(
                UserWarning,
                match="'draw_interp_pts' doesn't work in 'output' mode",
        ):
            seq.draw(mode="output")
        seq.draw(mode="input+output")
コード例 #16
0
def test_sequence():
    seq = Sequence(reg, device)
    assert seq.get_duration() == 0
    with pytest.raises(RuntimeError, match="empty sequence"):
        seq.draw()
    seq.declare_channel("ch0", "raman_local", initial_target="q0")
    seq.declare_channel("ch1", "rydberg_local", initial_target="q0")
    seq.declare_channel("ch2", "rydberg_global")
    assert seq.get_duration("ch0") == 0
    assert seq.get_duration("ch2") == 0
    seq.phase_shift(np.pi, "q0", basis="ground-rydberg")

    with patch("matplotlib.pyplot.show"):
        with patch("matplotlib.figure.Figure.savefig"):
            seq.draw(fig_name="my_sequence.pdf")
            seq.draw(draw_register=True, fig_name="both.pdf")

    pulse1 = Pulse(
        InterpolatedWaveform(500, [0, 1, 0]),
        InterpolatedWaveform(500, [-1, 1, 0]),
        phase=0,
        post_phase_shift=np.pi,
    )
    pulse2 = Pulse.ConstantDetuning(BlackmanWaveform(1e3, np.pi / 4),
                                    25,
                                    np.pi,
                                    post_phase_shift=1)
    with pytest.raises(TypeError):
        seq.add([1, 5, 3], "ch0")
    with pytest.raises(ValueError, match="amplitude goes over the maximum"):
        seq.add(Pulse.ConstantPulse(20, 2 * np.pi * 10, -2 * np.pi * 100, 0),
                "ch2")
    with pytest.raises(ValueError,
                       match="detuning values go out of the range"):
        seq.add(Pulse.ConstantPulse(500, 2 * np.pi, -2 * np.pi * 100, 0),
                "ch0")
    with pytest.raises(ValueError, match="qubits with different phase ref"):
        seq.add(pulse2, "ch2")
    with pytest.raises(ValueError, match="Invalid protocol"):
        seq.add(pulse1, "ch0", protocol="now")

    wf_ = CompositeWaveform(BlackmanWaveform(30, 1), RampWaveform(15, 0, 2))
    with pytest.raises(TypeError, match="Failed to automatically adjust"):
        with pytest.warns(UserWarning, match="rounded up to 48 ns"):
            seq.add(Pulse.ConstantAmplitude(1, wf_, 0), "ch0")

    pulse1_ = Pulse.ConstantPulse(499, 2, -10, 0, post_phase_shift=np.pi)
    with pytest.warns(UserWarning, match="rounded up to 500 ns"):
        seq.add(pulse1_, "ch0")
    seq.add(pulse1, "ch1")
    seq.add(pulse2, "ch2")

    assert seq._last("ch0").ti == 0
    assert seq._last("ch0").tf == seq._last("ch1").ti
    assert seq._last("ch2").tf == seq._last("ch2").ti + 1000
    assert seq.current_phase_ref("q0", "digital") == np.pi

    seq.add(pulse1, "ch2")
    assert seq.get_duration("ch2") == 2500
    seq.add(pulse2, "ch1", protocol="no-delay")
    assert seq.get_duration("ch1") == 3500
    seq.add(pulse1, "ch0", protocol="no-delay")
    assert seq._last("ch0").ti == 500
    assert seq.get_duration("ch0") == 1000
    assert seq.current_phase_ref("q0", "digital") == 0
    seq.phase_shift(np.pi / 2, "q1")
    seq.target("q1", "ch0")
    assert seq._last_used["digital"]["q1"] == 0
    assert seq._last_target["ch0"] == 1000
    assert seq._last("ch0").ti == 1000
    assert seq.get_duration("ch0") == 1000
    seq.add(pulse1, "ch0")
    assert seq._last("ch0").ti == 2500
    assert seq.get_duration("ch0") == 3000
    seq.add(pulse1, "ch0", protocol="wait-for-all")
    assert seq._last("ch0").ti == 3500
    assert seq.get_duration("ch2") != seq.get_duration("ch0")
    seq.align("ch0", "ch2")
    assert seq.get_duration("ch2") == seq.get_duration("ch0")

    with patch("matplotlib.pyplot.show"):
        seq.draw(draw_phase_shifts=True)

    assert seq.get_duration() == 4000

    seq.measure(basis="digital")

    with patch("matplotlib.pyplot.show"):
        seq.draw(draw_phase_area=True)

    s = seq.serialize()
    assert json.loads(s)["__version__"] == pulser.__version__
    seq_ = Sequence.deserialize(s)
    assert str(seq) == str(seq_)