コード例 #1
0
def trunk_prime(n):
    if n == 2 or n == 3 or n == 5 or n == 7:
        return False
    if not is_prime(n):
        return False
    digs = [i for i in str(n)]
    for i in range(1, len(digs)):
        right = int("".join(digs[i:]))
        # print(right)
        left = int("".join(digs[:i]))
        if not is_prime(right) or not is_prime(left):
            return False
    return True
コード例 #2
0
def sequece_length(a, b):
    n = 0
    while True:
        numb = abs(quad(n, a, b))
        if not is_prime(numb):
            return n
        n += 1
コード例 #3
0
 def _strong_harshad_numbers(n, digits_sum):
     for i in range(10):
         next_n = (10 * n) + i
         dig_sum_i = digits_sum + i
         if next_n <= LIMIT and next_n % (dig_sum_i) == 0:
             if is_prime((next_n / dig_sum_i)):
                 rthp.update(_harshad_primes(next_n))
             _strong_harshad_numbers(next_n, dig_sum_i)
コード例 #4
0
def prime_sums(n):
    # this is the same as my coin sums code
    primes = [p for p in range(2, n) if is_prime(p)]
    ok_primes = [i for i in primes if i < (n + 1)]
    # print(ok_coins)
    sums = [0] * (n + 1)
    sums[0] = 1
    for prime in ok_primes:
        for i in range(prime, n + 1):
            sums[i] += sums[abs(i - prime)]
    return sums[n]
コード例 #5
0
ファイル: euler_046.py プロジェクト: jessekrubin/pyEuler
def p046():
    n = 3
    prime_numbers = set()
    prime_numbers.add(2)
    while True:
        if is_prime(n):
            prime_numbers.add(n)
        else:
            for p in prime_numbers:
                if sqrt(((n - p) / 2)) == int(sqrt(((n - p) / 2))):
                    break  # break if it works with the conjecture
            else:
                return n
        n += 2
コード例 #6
0
def spiral_prime_iterator(ratio_bound):
    ratio = 0.5
    i = 0
    addon = 2
    adds = 0
    no_primes = 0
    total_nums = 0
    while ratio > ratio_bound:
        if adds > 0 and adds % 4 == 0:
            addon += 2
        i += addon
        adds += 1
        total_nums += 1
        if is_prime(i + 1):
            no_primes += 1
        ratio = truediv(no_primes, total_nums)
    return addon + 1
コード例 #7
0
def p049():
    four_dig_primes = [i for i in range(1000, 10000) if is_prime(i)]
    num_4dig_primes = len(four_dig_primes)

    prime_perms = defaultdict(list)
    for prime in four_dig_primes:
        sorted_digs = tuple(sorted(digits_list(prime)))
        prime_perms[sorted_digs].append(prime)

    topop = [k for k, v in prime_perms.items() if len(v) < 3]
    for toop in topop:
        prime_perms.pop(toop)

    validsets = []
    for k, v in prime_perms.items():
        for combo in combinations(v, 3):
            if combo[1] - combo[0] == combo[2] - combo[1]:
                validsets.append(combo)

    return int("".join(str(n) for n in validsets[1]))
コード例 #8
0
ファイル: euler_060.py プロジェクト: jessekrubin/pyEuler
def check_pair(p1, p2):
    if is_prime(concat_numbers(p1, p2)) and is_prime(concat_numbers(p2, p1)):
        return True
    else:
        return False
コード例 #9
0
 def _harshad_primes(n):
     return set(a for a in (n * 10 + i for i in range(1, 10))
                if is_prime(a) and a < LIMIT)
コード例 #10
0
ファイル: euler_035.py プロジェクト: jessekrubin/pyEuler
def is_circ_prime(n):
    digist = [int(j) for j in digits_list(n)]
    return all((is_prime(int_from_digits(i)) for i in rotations_gen(digist)))
コード例 #11
0
def p026():
    primes_lt1000 = [i for i in range(1, 1000) if is_prime(i)]
    cycles = [num_cycles(p) for p in primes_lt1000]
    return primes_lt1000[cycles.index(max(cycles))]
コード例 #12
0
def test_is_prime():
    """

    """
    assert all(is_prime(n) for n in p_lt200)