コード例 #1
0
def test_clearsky_limits_csi_max(times):
    """Increasing `csi_max` passes larger values."""
    measured = pd.Series(np.linspace(800, 1000, len(times)), index=times)
    measured.iloc[0] = 1300
    measured.iloc[1] = 1200
    measured.iloc[2] = 1100
    clearsky = pd.Series(1000, index=times)
    expected = pd.Series(True, index=times)
    expected.iloc[0:3] = False
    assert_series_equal(
        irradiance.clearsky_limits(measured, clearsky, csi_max=1.0), expected)
    expected.iloc[2] = True
    assert_series_equal(
        irradiance.clearsky_limits(measured, clearsky, csi_max=1.1), expected)
    expected.iloc[1] = True
    assert_series_equal(
        irradiance.clearsky_limits(measured, clearsky, csi_max=1.2), expected)
コード例 #2
0
def test_clearsky_limits(times):
    """Values greater than clearsky values are flagged False.

    Notes
    -----
    Copyright (c) 2019 SolarArbiter. See the file
    LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
    of this distribution and at `<https://github.com/pvlib/
    pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE>`_
    for more information.

    """
    clearsky = pd.Series(np.linspace(50, 55, len(times)), index=times)
    measured = clearsky.copy()
    measured.iloc[0] *= 0.5
    measured.iloc[-1] *= 2.0
    clear_times = np.tile(True, len(times))
    clear_times[-1] = False
    assert_series_equal(irradiance.clearsky_limits(measured, clearsky),
                        pd.Series(index=times, data=clear_times))
コード例 #3
0
def test_clearsky_limits_negative_and_nan():
    """Irradiance values greater than clearsky valuse are flagged False
    along with NaNs.

    Notes
    -----
    Copyright (c) 2019 SolarArbiter. See the file
    LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
    of this distribution and at `<https://github.com/pvlib/
    pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE>`_
    for more information.

    """
    index = pd.date_range(start=datetime(2019, 6, 15, 12, 0, 0),
                          freq='15T',
                          periods=5)
    measured = pd.Series(index=index, data=[800, 1000, 1200, -200, np.nan])
    clearsky = pd.Series(index=index, data=1000)
    assert_series_equal(
        irradiance.clearsky_limits(measured, clearsky),
        pd.Series(index=index, data=[True, True, False, True, False]))
コード例 #4
0
# :py:meth:`pvlib.location.Location.get_clearsky`, using the lat-long
# coordinates associated the RMIS NREL system.

location = pvlib.location.Location(39.7407, -105.1686)
clearsky = location.get_clearsky(data.index)

# %%
# Use :py:func:`pvanalytics.quality.irradiance.clearsky_limits`.
# Here, we check GHI data in field 'irradiance_ghi__7981'.
# :py:func:`pvanalytics.quality.irradiance.clearsky_limits`
# returns a mask that identifies data that falls between
# lower and upper limits. The defaults (used here)
# are upper bound of 110% of clear-sky GHI, and
# no lower bound.

clearsky_limit_mask = clearsky_limits(data['irradiance_ghi__7981'],
                                      clearsky['ghi'])

# %%
# Mask nighttime values in the GHI time series using the
# :py:func:`pvanalytics.features.daytime.power_or_irradiance` function.
# We will then remove nighttime values from the GHI time series.

day_night_mask = power_or_irradiance(series=data['irradiance_ghi__7981'],
                                     freq=freq)

# %%
# Plot the 'irradiance_ghi__7981' data stream and its associated clearsky GHI
# data stream. Mask the GHI time series by its clearsky_limit_mask for daytime
# periods.
# Please note that a simple Ineichen model with static monthly turbidities
# isn't always accurate, as in this case. Other models that may provide better