コード例 #1
0
def test_marion_diffuse_model(mocker):
    # 1: return values are correct
    # 2: the underlying models are called appropriately
    ashrae_expected = {
        'sky': 0.9596085829811408,
        'horizon': 0.8329070417832541,
        'ground': 0.719823559106309
    }
    physical_expected = {
        'sky': 0.9539178294437575,
        'horizon': 0.7652650139134007,
        'ground': 0.6387140117795903
    }
    ashrae_spy = mocker.spy(_iam, 'ashrae')
    physical_spy = mocker.spy(_iam, 'physical')

    ashrae_actual = _iam.marion_diffuse('ashrae', 20)
    assert ashrae_spy.call_count == 3  # one call for each of the 3 regions
    assert physical_spy.call_count == 0
    physical_actual = _iam.marion_diffuse('physical', 20)
    assert ashrae_spy.call_count == 3
    assert physical_spy.call_count == 3

    for k, v in ashrae_expected.items():
        np.testing.assert_allclose(ashrae_actual[k], v)

    for k, v in physical_expected.items():
        np.testing.assert_allclose(physical_actual[k], v)
コード例 #2
0
def test_marion_diffuse_kwargs():
    # kwargs get passed to underlying model
    expected = {
        'sky': 0.967489994422575,
        'horizon': 0.8647842827418412,
        'ground': 0.7700443455928433
    }
    actual = _iam.marion_diffuse('ashrae', 20, b=0.04)

    for k, v in expected.items():
        np.testing.assert_allclose(actual[k], v)
コード例 #3
0
def test_marion_diffuse_invalid():
    with pytest.raises(ValueError):
        _iam.marion_diffuse('not_a_model', 20)
コード例 #4
0
plt.grid()

# %%
# Diffuse sky, ground, and horizon IAM
# ------------------------------------
#
# Now that we have an AOI model, we use :py:func:`pvlib.iam.marion_diffuse`
# to integrate it across solid angle and determine diffuse irradiance IAM.
# Marion defines three types of diffuse irradiance:
# sky, horizon, and ground-reflected.  The diffuse IAM value is evaluated
# independently for each type.

tilts = np.arange(0, 91, 2.5)

# marion_diffuse calculates all three IAM values (sky, horizon, ground)
iam_no_coating = marion_diffuse('physical', tilts, n=1.526, K=0)
iam_ar_coating = marion_diffuse('physical', tilts, n=1.3, K=0)

# %%
# First we recreate Figure 4 in [1]_, showing the dependence of the sky diffuse
# incidence angle modifier on module tilt.

plt.plot(tilts,
         iam_ar_coating['sky'],
         c='b',
         marker='^',
         label='$F_{sky}$, AR coated, n=1.3')
plt.plot(tilts,
         iam_no_coating['sky'],
         c='r',
         marker='x',