def _to_ndarray(java_tensor: JavaObject) -> Any: if (java_tensor.getRank() == 0): return np.array(java_tensor.scalar()) else: return Tensor.__get_ndarray_from_tensor(java_tensor).reshape(java_tensor.getShape())
def j_tensor_wrapper_to_np_array(j_obj: JavaObject): buffer, dtype_str, shape = j_obj.getBytes(), j_obj.getDtypeStr( ), j_obj.getShape() arr = np.frombuffer(buffer, dtype=dtype_str).reshape(shape) return arr
def _to_ndarray(java_tensor: JavaObject) -> numpy_types: if java_tensor.getRank() == 0: return np.array(java_tensor.scalar()) else: return np.array(list(java_tensor.asFlatArray())).reshape( java_tensor.getShape())
def from_java(cls, java_tensor_info: JavaObject) -> "TensorInfo": shape = list(java_tensor_info.getShape()) type = java_gateway.get_field(java_tensor_info, "type").toString() return cls(shape, type)