def generate_points(self): """Generate a matrix with the initial sample points, scaled to the unit hypercube :return: Box-Behnken design in the unit cube of size npts x dim :rtype: numpy.array """ return 0.5*(1 + pydoe.bbdesign(self.dim, center=1))
def localInitialize(self): """ Will perform all initialization specific to this Sampler. For instance, creating an empty container to hold the identified surface points, error checking the optionally provided solution export and other preset values, and initializing the limit surface Post-Processor used by this sampler. @ In, None @ Out, None """ if self.respOpt['algorithmType'] == 'boxbehnken': self.designMatrix = doe.bbdesign( len(self.gridInfo.keys()), center=self.respOpt['options']['ncenters']) elif self.respOpt['algorithmType'] == 'centralcomposite': self.designMatrix = doe.ccdesign( len(self.gridInfo.keys()), center=self.respOpt['options']['centers'], alpha=self.respOpt['options']['alpha'], face=self.respOpt['options']['face']) gridInfo = self.gridEntity.returnParameter('gridInfo') stepLength = {} for cnt, varName in enumerate(self.axisName): self.mapping[varName] = np.unique(self.designMatrix[:, cnt]).tolist() gridInfo[varName] = (gridInfo[varName][0], gridInfo[varName][1], InterpolatedUnivariateSpline( np.array([ min(self.mapping[varName]), max(self.mapping[varName]) ]), np.array([ min(gridInfo[varName][2]), max(gridInfo[varName][2]) ]), k=1)(self.mapping[varName]).tolist()) stepLength[varName] = [ round(gridInfo[varName][-1][k + 1] - gridInfo[varName][-1][k], 14) for k in range(len(gridInfo[varName][-1]) - 1) ] self.gridEntity.updateParameter("stepLength", stepLength, False) self.gridEntity.updateParameter("gridInfo", gridInfo) Grid.localInitialize(self) self.limit = self.designMatrix.shape[0]
def bb_points(self): """Box-Behnken designs.""" return (bbdesign(self.dim, 1) + 1) * 0.5
def __init__(self, dim): self.dim = dim self.npts = pydoe.bbdesign(self.dim, center=1).shape[0]
def _generate_doe_design(self): """ This function is responsible for generating the matrix of operating conditions used in the design of experiments. It supports all of the design types implemented by pyDOE with the exception of general full factorials (including mixed level factorials). Full factorials are only permitted to have two levels at the moment. Parameters ---------- None Returns ------- None, but updates the self object to have the needed auxiliary data """ # Unpack the dictionary of DOE design parameters doe_type = self.doe_design['doe_args']['type'] kwargs = self.doe_design['doe_args']['args'] # Get the list of parameters to iterate over try: param_list = self.doe_design['doe_params'] except: self._generate_doe_param_list() param_list = self.doe_design['doe_params'] n = len(param_list) # Create the design matrix in coded units if doe_type == 'full2': # Two level general factorial coded_design_matrix = pyDOE.ff2n(n) elif doe_type == 'frac': # Fractional factorial gen = kwargs.pop('gen', None) if gen is None: raise ValueError( 'No generator sequence specified for a fractional factorial design.' ) coded_design_matrix = pyDOE.fracfact(gen) elif doe_type == 'pb': # Plackett-Burman coded_design_matrix = pyDOE.pbdesign(n) elif doe_type == 'bb': # Box-Behnken coded_design_matrix = pyDOE.bbdesign(n, **kwargs) elif doe_type == 'cc': # Central composite coded_design_matrix = pyDOE.ccdesign(n, **kwargs) elif doe_type == 'lh': # Latin hypercube coded_design_matrix = pyDOE.lhs(n, **kwargs) elif doe_type == 'sob': # Sobol' Lp-tau low discrepancy sequence samples = kwargs.pop('samples') coded_design_matrix = sobol_seq.i4_sobol_generate(n, samples) else: raise ValueError('Unrecognized DOE design option ' + doe_type) # Convert the coded design matrix into an uncoded design matrix (i.e., # in terms of the raw operating conditions). This takes the minimum and # maximum values from the distributions and places the points # accordingly. a_array = np.zeros(n) # Minimum b_array = np.zeros(n) # Maximum for i in range(n): pkey = param_list[i] a_array[i] = self.doe_design['doe_param_dist'][pkey].a b_array[i] = self.doe_design['doe_param_dist'][pkey].b r_array = b_array - a_array # Ranges for each dimension if doe_type in ['pb', 'bb', 'cc', 'frac', 'full2']: # These designs all have points clustered around a distinct center. # The coded matrix is in terms of unit perturbations from the # center, so we can just scale them by the ranges before adding the # center value. For these designs, we actually want to use half the # range so that the points that are supposed to be at the min/max # values end up there. c_array = (a_array + b_array) / 2 # Center is average of min, max doe_op_conds = coded_design_matrix * r_array / 2 + c_array elif doe_type in ['lh', 'sob']: # The Latin hypercube and Sobol' sequences space points between a # range. This means the coded design matrix has all elements on # (0, 1). Since we don't have a center point, we place the operating # conditions with respect to the minimum values. doe_op_conds = coded_design_matrix * r_array + a_array self.doe_design['doe_op_conds'] = doe_op_conds
def generate_points(self): return 0.5*(1 + pydoe.bbdesign(self.dim, center=1))