コード例 #1
0
ファイル: benchmarks.py プロジェクト: bekti7/pmi
def print_point_statistics(data, models, externalmodels = None, externalforecasts = None, indexers=None):
    """
    Run point benchmarks on given models and data and print the results

    :param data: test data
    :param models: a list of FTS models to benchmark
    :param externalmodels: a list with benchmark models (façades for other methods)
    :param externalforecasts:
    :param indexers:
    :return:
    """
    ret = "Model		& Order     & RMSE		& SMAPE      & Theil's U		\\\\ \n"
    for count,model in enumerate(models,start=0):
        _rmse, _smape, _u = Measures.get_point_statistics(data, model, indexers)
        ret += model.shortname + "		& "
        ret += str(model.order) + "		& "
        ret += str(_rmse) + "		& "
        ret += str(_smape)+ "		& "
        ret += str(_u)
        #ret += str(round(Measures.TheilsInequality(np.array(data[fts.order:]), np.array(forecasts[:-1])), 4))
        ret += "	\\\\ \n"
    if externalmodels is not None:
        l = len(externalmodels)
        for k in np.arange(0,l):
            ret += externalmodels[k] + "		& "
            ret += " 1		& "
            ret += str(round(Measures.rmse(data, externalforecasts[k][:-1]), 2)) + "		& "
            ret += str(round(Measures.smape(data, externalforecasts[k][:-1]), 2))+ "		& "
            ret += str(round(Measures.UStatistic(data, externalforecasts[k][:-1]), 2))
            ret += "	\\\\ \n"
    print(ret)
コード例 #2
0
def print_point_statistics(data,
                           models,
                           externalmodels=None,
                           externalforecasts=None,
                           indexers=None):
    ret = "Model		& Order     & RMSE		& SMAPE      & Theil's U		\\\\ \n"
    for count, model in enumerate(models, start=0):
        _rmse, _smape, _u = Measures.get_point_statistics(
            data, model, indexers)
        ret += model.shortname + "		& "
        ret += str(model.order) + "		& "
        ret += str(_rmse) + "		& "
        ret += str(_smape) + "		& "
        ret += str(_u)
        #ret += str(round(Measures.TheilsInequality(np.array(data[fts.order:]), np.array(forecasts[:-1])), 4))
        ret += "	\\\\ \n"
    if externalmodels is not None:
        l = len(externalmodels)
        for k in np.arange(0, l):
            ret += externalmodels[k] + "		& "
            ret += " 1		& "
            ret += str(round(Measures.rmse(data, externalforecasts[k][:-1]),
                             2)) + "		& "
            ret += str(
                round(Measures.smape(data, externalforecasts[k][:-1]),
                      2)) + "		& "
            ret += str(
                round(Measures.UStatistic(data, externalforecasts[k][:-1]), 2))
            ret += "	\\\\ \n"
    print(ret)
コード例 #3
0
ファイル: GridSearch.py プロジェクト: ZuoMatthew/pyFTS
def cluster_method(individual, train, test):
    from pyFTS.common import Util, Membership
    from pyFTS.models import hofts
    from pyFTS.partitioners import Grid, Entropy
    from pyFTS.benchmarks import Measures

    if individual['mf'] == 1:
        mf = Membership.trimf
    elif individual['mf'] == 2:
        mf = Membership.trapmf
    elif individual['mf'] == 3 and individual['partitioner'] != 2:
        mf = Membership.gaussmf
    else:
        mf = Membership.trimf

    if individual['partitioner'] == 1:
        partitioner = Grid.GridPartitioner(data=train, npart=individual['npart'], func=mf)
    elif individual['partitioner'] == 2:
        npart = individual['npart'] if individual['npart'] > 10 else 10
        partitioner = Entropy.EntropyPartitioner(data=train, npart=npart, func=mf)


    model = hofts.WeightedHighOrderFTS(partitioner=partitioner,
                               lags=individual['lags'],
                               alpha_cut=individual['alpha'],
                               order=individual['order'])

    model.fit(train)

    rmse, mape, u = Measures.get_point_statistics(test, model)

    size = len(model)

    return individual, rmse, size, mape, u
コード例 #4
0
def evaluation1(dataset, individual):
    from pyFTS.common import Util
    from pyFTS.benchmarks import Measures

    try:
        results = []
        lengths = []

        for count, train, test in Util.sliding_window(dataset,
                                                      800,
                                                      train=.8,
                                                      inc=.25):
            model = phenotype(individual, train)

            if model is None:
                return (None)

            rmse, _, _ = Measures.get_point_statistics(test, model)
            lengths.append(len(model))

            results.append(rmse)

            _lags = sum(model.lags) * 100

            rmse = np.nansum(
                [.6 * np.nanmean(results), .4 * np.nanstd(results)])
            len_lags = np.nansum([.4 * np.nanmean(lengths), .6 * _lags])

        return len_lags, rmse

    except Exception as ex:
        print("EXCEPTION!", str(ex), str(individual))
        return np.inf
コード例 #5
0
from pyFTS.benchmarks import Measures
from pyFTS.partitioners import Grid, Entropy
from pyFTS.models import hofts
from pyFTS.common import Membership

x = [k for k in np.arange(-2 * np.pi, 2 * np.pi, 0.1)]
y = [np.sin(k) for k in x]

rows = []

fig, ax = plt.subplots(nrows=1, ncols=1, figsize=[15, 5])

ax.plot(y, label='Original', color='black')

for npart in np.arange(5, 35, 5):
    part = Grid.GridPartitioner(data=y, npart=npart)
    model = hofts.HighOrderFTS(order=1, partitioner=part)
    model.fit(y)
    forecasts = model.predict(y)

    ax.plot(forecasts[:-1], label=str(npart) + " partitions")

    rmse, mape, u = Measures.get_point_statistics(y, model)

    rows.append([npart, rmse, mape, u])

handles, labels = ax.get_legend_handles_labels()
lgd = ax.legend(handles, labels, loc=2, bbox_to_anchor=(1, 1))

df = pd.DataFrame(rows, columns=['Partitions', 'RMSE', 'MAPE', 'U'])
コード例 #6
0
def run_point(mfts,
              partitioner,
              train_data,
              test_data,
              window_key=None,
              **kwargs):
    """
    Point forecast benchmark function to be executed on cluster nodes
    :param mfts: FTS model
    :param partitioner: Universe of Discourse partitioner
    :param train_data: data used to train the model
    :param test_data: ata used to test the model
    :param window_key: id of the sliding window
    :param transformation: data transformation
    :param indexer: seasonal indexer
    :return: a dictionary with the benchmark results
    """
    import time
    from pyFTS.models import yu, chen, hofts, pwfts, ismailefendi, sadaei, song, cheng, hwang
    from pyFTS.partitioners import Grid, Entropy, FCM
    from pyFTS.benchmarks import Measures, naive, arima, quantreg
    from pyFTS.common import Transformations

    tmp = [
        song.ConventionalFTS, chen.ConventionalFTS, yu.WeightedFTS,
        ismailefendi.ImprovedWeightedFTS, cheng.TrendWeightedFTS,
        sadaei.ExponentialyWeightedFTS, hofts.HighOrderFTS, hwang.HighOrderFTS,
        pwfts.ProbabilisticWeightedFTS
    ]

    tmp2 = [
        Grid.GridPartitioner, Entropy.EntropyPartitioner, FCM.FCMPartitioner
    ]

    tmp4 = [naive.Naive, arima.ARIMA, quantreg.QuantileRegression]

    tmp3 = [Measures.get_point_statistics]

    tmp5 = [Transformations.Differential]

    indexer = kwargs.get('indexer', None)

    steps_ahead = kwargs.get('steps_ahead', 1)
    method = kwargs.get('method', None)

    if mfts.benchmark_only:
        _key = mfts.shortname + str(
            mfts.order if mfts.order is not None else "")
    else:
        pttr = str(partitioner.__module__).split('.')[-1]
        _key = mfts.shortname + " n = " + str(
            mfts.order) + " " + pttr + " q = " + str(partitioner.partitions)
        mfts.partitioner = partitioner
        mfts.append_transformation(partitioner.transformation)

    _key += str(steps_ahead)
    _key += str(method) if method is not None else ""

    _start = time.time()
    mfts.fit(train_data, **kwargs)
    _end = time.time()
    times = _end - _start

    _start = time.time()
    _rmse, _smape, _u = Measures.get_point_statistics(test_data, mfts,
                                                      **kwargs)
    _end = time.time()
    times += _end - _start

    ret = {
        'key': _key,
        'obj': mfts,
        'rmse': _rmse,
        'smape': _smape,
        'u': _u,
        'time': times,
        'window': window_key,
        'steps': steps_ahead,
        'method': method
    }

    return ret
コード例 #7
0
ファイル: general.py プロジェクト: ZuoMatthew/pyFTS
from pyFTS.data import TAIEX, SP500, NASDAQ, Malaysia

dataset = Malaysia.get_data('temperature')[:1000]

p = Grid.GridPartitioner(data=dataset, npart=20)

print(p)

model = hofts.WeightedHighOrderFTS(partitioner=p, order=2)

model.fit(dataset)  #[22, 22, 23, 23, 24])

print(model)

Measures.get_point_statistics(dataset, model)
'''
#dataset = SP500.get_data()[11500:16000]
#dataset = NASDAQ.get_data()
#print(len(dataset))


bchmk.sliding_window_benchmarks(dataset, 1000, train=0.8, inc=0.2,
                                methods=[chen.ConventionalFTS], #[pwfts.ProbabilisticWeightedFTS],
                                benchmark_models=False,
                                transformations=[None],
                                #orders=[1, 2, 3],
                                partitions=np.arange(10, 100, 2),
                                progress=False, type="point",
                                #steps_ahead=[1,2,4,6,8,10],
                                distributed=False, nodes=['192.168.0.110', '192.168.0.107', '192.168.0.106'],
コード例 #8
0
ファイル: pwfts.py プロジェクト: yashhguptaa1/pyFTS
model2 = pwfts.ProbabilisticWeightedFTS(partitioner=fs, lags=[1, 2])
#model2.append_transformation(tdiff)
model2.shortname = "2"
#model = pwfts.ProbabilisticWeightedFTS(partitioner=fs, order=2)# lags=[1,2])

model1.fit(train)
model2.fit(train)

#print(model1)

#print(model2)

for model in [model1, model2]:
    #forecasts = model.predict(test)
    print(model.shortname)
    print(Measures.get_point_statistics(test, model))

#handles, labels = ax.get_legend_handles_labels()
#ax.legend(handles, labels, loc=2, bbox_to_anchor=(1, 1))

#print(Measures.get_point_statistics(test,model))
'''
bchmk.sliding_window_benchmarks(train,1000,0.8,
                                methods=[pwfts.ProbabilisticWeightedFTS], #,ifts.IntervalFTS],
                                orders=[1,2,3],
                                partitions=[10])
'''
'''

from pyFTS.common import FLR,FuzzySet,Membership,SortedCollection
taiex_fs1 = Grid.GridPartitioner(data=train, npart=30)