from pyFTS.data import TAIEX as tx from pyFTS.common import Transformations from pyFTS.data import SONDA df = SONDA.get_dataframe() train = df.iloc[0:578241] #three years test = df.iloc[1572480:2096640] #one year del df from pyFTS.partitioners import Grid, Util as pUtil from pyFTS.common import Transformations, Util from pyFTS.models.multivariate import common, variable, mvfts from pyFTS.models.seasonal import partitioner as seasonal from pyFTS.models.seasonal.common import DateTime bc = Transformations.BoxCox(0) tdiff = Transformations.Differential(1) np = 10 model = mvfts.MVFTS("") fig, axes = plt.subplots(nrows=5, ncols=1, figsize=[15, 10]) sp = { 'seasonality': DateTime.day_of_year, 'names': [ 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec' ]
import matplotlib.pylab as plt import pandas as pd from pyFTS.common import Util as cUtil, FuzzySet from pyFTS.partitioners import Grid, Entropy, Util as pUtil, Simple from pyFTS.benchmarks import benchmarks as bchmk, Measures from pyFTS.models import chen, yu, cheng, ismailefendi, hofts, pwfts, tsaur, song, sadaei, ifts from pyFTS.models.ensemble import ensemble from pyFTS.common import Membership, Util from pyFTS.benchmarks import arima, quantreg, BSTS, gaussianproc, knn from pyFTS.common import Transformations tdiff = Transformations.Differential(1) boxcox = Transformations.BoxCox(0) from pyFTS.data import Enrollments, AirPassengers ''' data = AirPassengers.get_data() roi = Transformations.ROI() #plt.plot(data) _roi = roi.apply(data) #plt.plot(_roi) plt.plot(roi.inverse(_roi, data)) '''