def testAllToAll(self): for srcP in [self.source5, self.source22, self.target33]: for tgtP in [self.target6, self.target33]: if srcP == tgtP: prj = sim.Projection( srcP, tgtP, sim.AllToAllConnector(allow_self_connections=False, weights=1.234)) else: prj = sim.Projection(srcP, tgtP, sim.AllToAllConnector(weights=1.234)) weights = prj._connections.W.toarray().flatten().tolist() self.assertEqual(weights, [1.234] * len(prj))
def setup_2_layers_4_units_ff_net(): configure_scheduling() pynnn.setup() Tns.p1 = pynnn.Population(4, pynnn.IF_curr_alpha, structure=pynnn.space.Grid2D()) Tns.p2 = pynnn.Population(4, pynnn.IF_curr_alpha, structure=pynnn.space.Grid2D()) Tns.prj1_2 = pynnn.Projection( Tns.p1, Tns.p2, pynnn.AllToAllConnector(allow_self_connections=False), target='excitatory') Tns.prj1_2.set("weight", 1) Tns.max_weight = 34 Tns.rore1_update_p = 10 Tns.rore1_win_width = 200 Tns.rore2_update_p = 10 Tns.rore2_win_width = 200 Tns.rore1 = RectilinearOutputRateEncoder(Tns.p1, 2, 2, Tns.rore1_update_p, Tns.rore1_win_width) Tns.rore2 = RectilinearOutputRateEncoder(Tns.p2, 2, 2, Tns.rore2_update_p, Tns.rore2_win_width) common.pynn_utils.POP_ADAPT_DICT[( Tns.p1, common.pynn_utils.RectilinearOutputRateEncoder)] = Tns.rore1 common.pynn_utils.POP_ADAPT_DICT[( Tns.p2, common.pynn_utils.RectilinearOutputRateEncoder)] = Tns.rore2 enable_recording(Tns.p1, Tns.p2) schedule_output_rate_calculation(Tns.p1) schedule_output_rate_calculation(Tns.p2)
def setup_pynn_populations_with_full_connectivity(): pynnn.setup() Tns.p1 = pynnn.Population(4, pynnn.IF_curr_alpha, structure=pynnn.space.Grid2D()) Tns.p2 = pynnn.Population(4, pynnn.IF_curr_alpha, structure=pynnn.space.Grid2D()) Tns.prj1_2 = pynnn.Projection( Tns.p1, Tns.p2, pynnn.AllToAllConnector(allow_self_connections=False), target='excitatory')
def setup_pynn_populations(): pynnn.setup() Tns.p1 = pynnn.Population(64, pynnn.IF_curr_alpha, structure=pynnn.space.Grid2D()) Tns.p2 = pynnn.Population(64, pynnn.IF_curr_alpha, structure=pynnn.space.Grid2D()) Tns.prj1_2 = pynnn.Projection( Tns.p1, Tns.p2, pynnn.AllToAllConnector(allow_self_connections=False), target='excitatory') # Weights in nA as IF_curr_alpha uses current-based synapses Tns.prj1_2.set("weight", 1) Tns.max_weight = 33
def setup_and_fill_adapter(): setup_adapter() Tns.pop_size = 27 Tns.pynn_pop1 = pynnn.Population(Tns.pop_size, pynnn.IF_cond_alpha) Tns.ids1 = [int(u) for u in Tns.pynn_pop1.all()] Tns.pynn_pop2 = pynnn.Population(Tns.pop_size, pynnn.IF_cond_alpha, structure=pynnn.space.Grid3D()) Tns.ids2 = [int(u) for u in Tns.pynn_pop2.all()] A.add_pynn_population(Tns.pynn_pop1) Tns.pop2_alias = "testmap" A.add_pynn_population(Tns.pynn_pop2, alias=Tns.pop2_alias) Tns.pynn_proj1 = pynnn.Projection(Tns.pynn_pop1, Tns.pynn_pop2, pynnn.OneToOneConnector()) Tns.pynn_proj2 = pynnn.Projection(Tns.pynn_pop2, Tns.pynn_pop1, pynnn.AllToAllConnector()) A.add_pynn_projection(Tns.pynn_pop1, Tns.pynn_pop2, Tns.pynn_proj1) A.add_pynn_projection(Tns.pynn_pop2, Tns.pynn_pop1, Tns.pynn_proj2)
# syn = sim.StaticSynapse(weight = 0.05, delay = 0.5) depressing_synapse_ee = sim.TsodyksMarkramSynapse(weight=0.05, delay=0.2, U=0.5, tau_rec=800.0, tau_facil=0.01) facilitating_synapse_ee = sim.TsodyksMarkramSynapse(weight=0.05, delay=0.5, U=0.04, tau_rec=100.0, tau_facil=1000) static_synapse = sim.StaticSynapse(weight=0.05, delay=0.5) Input_E_connection = sim.Projection(Excinp, Pexc, sim.AllToAllConnector(), static_synapse, receptor_type='excitatory') E_E_connection = sim.Projection(Pexc, Pexc, sim.FixedProbabilityConnector(p_connect=0.5), depressing_synapse_ee, receptor_type='excitatory') Excinp.record('spikes') # Excinp[1].record('v') Pexc.record('spikes') Pexc[5:6].record('v') for i in range(no_run):
Excinp = sim.Population(10, sim.SpikeSourcePoisson(rate = 20.0, start = 0, duration = run_time * no_run)) # cell_type_parameters = {'tau_refrac': 0.1, 'v_thresh': -50.0, 'tau_m': 20.0, 'tau_syn_E': 0.5, 'v_rest': -65.0,\ # 'cm': 1.0, 'v_reset': -65.0, 'tau_syn_I': 0.5, 'i_offset': 0.0} # print(sim.IF_curr_alpha.default_parameters) # cell_type = sim.IF_cond_exp(**cell_type_parameters) # neuron type of population Pexc = sim.Population(10, sim.EIF_cond_exp_isfa_ista(), label = "excitotary neurons") # Pexc.set(tau_refrac = 0.1, v_thresh = -50.0, tau_m = 20.0, tau_syn_E = 0.5, v_rest = -65.0, \ # cm = 1.0, v_reset = -65, tau_syn_I = 0.5, i_offset = 0.0) # Pexc.initialize(**cell_type_parameters) # print Pexc.celltype.default_initial_values # print Pexc.get('tau_m') # syn = sim.StaticSynapse(weight = 0.05, delay = 0.5) # depressing_synapse_ee = sim.TsodyksMarkramSynapse(weight = 0.05, delay = 0.2, U = 0.5, tau_rec = 800.0, tau_facil = 0.01) facilitating_synapse_ee = sim.TsodyksMarkramSynapse(weight = 0.05, delay = 0.5, U = 0.04, tau_rec = 100.0, tau_facil = 1000) connection = sim.Projection(Excinp, Pexc, sim.AllToAllConnector(), facilitating_synapse_ee, receptor_type = 'excitatory') # E_E_connection = sim.Projection(Pexc, Pexc, sim.FixedProbabilityConnector(p_connect = 0.5), depressing_synapse_ee, receptor_type = 'excitatory') Excinp.record('spikes') # Excinp[1].record('v') Pexc.record('spikes') Pexc[5:6].record('v') for i in range(no_run): sim.run_until(run_time * (i + 1)) print('the time is %.1f' %(run_time * (i + 1))) spikes = Excinp.get_data() spike = Pexc.get_data() # print connection.get('weight',format = 'array')
def train(label, untrained_weights=None): organisedStim = {} labelSpikes = [] spikeTimes = generate_data(label) for i in range(output_size): labelSpikes.append([]) labelSpikes[label] = [int(max(max(spikeTimes))) + 1] if untrained_weights == None: untrained_weights = RandomDistribution('uniform', low=wMin, high=wMaxInit).next(input_size * output_size) #untrained_weights = RandomDistribution('normal_clipped', mu=0.1, sigma=0.05, low=wMin, high=wMaxInit).next(input_size*output_size) untrained_weights = np.around(untrained_weights, 3) #saveWeights(untrained_weights, 'untrained_weightssupmodel1traj') print("init!") print "length untrained_weights :", len(untrained_weights) if len(untrained_weights) > input_size: training_weights = [[0 for j in range(output_size)] for i in range(input_size) ] #np array? size 1024x25 k = 0 #for i in untrained_weights: # training_weights[i[0]][i[1]]=i[2] for i in range(input_size): for j in range(output_size): training_weights[i][j] = untrained_weights[k] k += 1 else: training_weights = untrained_weights connections = [] for n_pre in range(input_size): # len(untrained_weights) = input_size for n_post in range( output_size ): # len(untrained_weight[0]) = output_size; 0 or any n_pre connections.append((n_pre, n_post, training_weights[n_pre][n_post], __delay__)) #index runTime = int(max(max(spikeTimes))) + 100 ##################### sim.setup(timestep=1) #def populations layer1 = sim.Population(input_size, sim.SpikeSourceArray, {'spike_times': spikeTimes}, label='inputspikes') layer2 = sim.Population(output_size, sim.IF_curr_exp, cellparams=cell_params_lif, label='outputspikes') supsignal = sim.Population(output_size, sim.SpikeSourceArray, {'spike_times': labelSpikes}, label='supersignal') #def learning rule stdp = sim.STDPMechanism( #weight=untrained_weights, #weight=0.02, # this is the initial value of the weight #delay="0.2 + 0.01*d", timing_dependence=sim.SpikePairRule(tau_plus=tauPlus, tau_minus=tauMinus, A_plus=aPlus, A_minus=aMinus), #weight_dependence=sim.MultiplicativeWeightDependence(w_min=wMin, w_max=wMax), weight_dependence=sim.AdditiveWeightDependence(w_min=wMin, w_max=wMax), dendritic_delay_fraction=0) #def projections stdp_proj = sim.Projection(layer1, layer2, sim.FromListConnector(connections), synapse_type=stdp) inhibitory_connections = sim.Projection( layer2, layer2, sim.AllToAllConnector(allow_self_connections=False), synapse_type=sim.StaticSynapse(weight=inhibWeight, delay=__delay__), receptor_type='inhibitory') stim_proj = sim.Projection(supsignal, layer2, sim.OneToOneConnector(), synapse_type=sim.StaticSynapse( weight=stimWeight, delay=__delay__)) layer1.record(['spikes']) layer2.record(['v', 'spikes']) supsignal.record(['spikes']) sim.run(runTime) print("Weights:{}".format(stdp_proj.get('weight', 'list'))) weight_list = [ stdp_proj.get('weight', 'list'), stdp_proj.get('weight', format='list', with_address=False) ] neo = layer2.get_data(["spikes", "v"]) spikes = neo.segments[0].spiketrains v = neo.segments[0].filter(name='v')[0] neostim = supsignal.get_data(["spikes"]) print(label) spikestim = neostim.segments[0].spiketrains neoinput = layer1.get_data(["spikes"]) spikesinput = neoinput.segments[0].spiketrains plt.close('all') pplt.Figure(pplt.Panel(v, ylabel="Membrane potential (mV)", xticks=True, yticks=True, xlim=(0, runTime)), pplt.Panel(spikesinput, xticks=True, yticks=True, markersize=2, xlim=(0, runTime)), pplt.Panel(spikestim, xticks=True, yticks=True, markersize=2, xlim=(0, runTime)), pplt.Panel(spikes, xticks=True, xlabel="Time (ms)", yticks=True, markersize=2, xlim=(0, runTime)), title="Training" + str(label), annotations="Training" + str(label)).save('plot/' + str(trylabel) + str(label) + '_training.png') #plt.hist(weight_list[1], bins=100) #plt.show() plt.close('all') print(wMax) ''' plt.hist([weight_list[1][0:input_size], weight_list[1][input_size:input_size*2], weight_list[1][input_size*2:]], bins=20, label=['neuron 0', 'neuron 1', 'neuron 2'], range=(0, wMax)) plt.title('weight distribution') plt.xlabel('Weight value') plt.ylabel('Weight count') ''' #plt.show() #plt.show() sim.end() for i in weight_list[0]: #training_weights[int(i[0])][int(i[1])]=float(i[2]) weight_list[1][int(i[0]) * output_size + int(i[1])] = i[2] return weight_list[1]
{'spike_times': []}) spikeSourcePlastic = sim.Population(1, sim.SpikeSourceArray, {'spike_times': stimulusPlastic}) assert (spikeSourceStim != None) assert (spikeSourcePlastic != None) # configure stdp stdp = sim.STDPMechanism(weight = 0.2, # this is the initial value of the weight timing_dependence = sim.SpikePairRule(tau_plus = 20.0, tau_minus = 20.0, A_plus = 0.01, A_minus = 0.012),\ weight_dependence = sim.AdditiveWeightDependence(w_min = 0, w_max = 0.04)) # connect stimulus sim.Projection(spikeSourceStim, neuron, sim.AllToAllConnector(), sim.StaticSynapse(weight=0.04, delay=timingPrePostStim), receptor_type='excitatory') # create plastic synapse prj = sim.Projection(spikeSourcePlastic, neuron, sim.AllToAllConnector(), stdp) weightBefore = prj.get('weight', format='list') prj.set(weight=0.15) print weightBefore neuron.record('spikes') lastInputSpike = np.max(np.concatenate((stimulus, stimulusPlastic))) runtime = lastInputSpike + stimulusOffset sim.run(runtime)
weight=0.02, # this is the initial value of the weight #delay="0.2 + 0.01*d", timing_dependence=sim.SpikePairRule(tau_plus=20.0, tau_minus=20.0, A_plus=0.01, A_minus=0.012), weight_dependence=sim.AdditiveWeightDependence(w_min=0, w_max=0.04), dendritic_delay_fraction=0) #Error: The pyNN.brian backend does not currently support dendritic delays: # for the purpose of STDP calculations all delays are assumed to be axonal #for brian dendritic_delay_fraction=0 default value 1.0 ''' Connection algorithms ''' connector = sim.AllToAllConnector(allow_self_connections=False) # no autapses #default True connector = sim.OneToOneConnector() #Connecting neurons with a fixed probability connector = sim.FixedProbabilityConnector(p_connect=0.2) #Connecting neurons with a position-dependent probability DDPC = sim.DistanceDependentProbabilityConnector connector = DDPC("exp(-d)") connector = DDPC("d<3") #The constructor requires a string d_expression, which should be a distance expression, # as described above for delays, but returning a probability (a value between 0 and 1) #Divergent/fan-out connections
def main(): ## Uninteresting setup, start up the visu process,... logfile = make_logfile_name() ensure_dir(logfile) f_h = logging.FileHandler(logfile) f_h.setLevel(SUBDEBUG) d_h = logging.StreamHandler() d_h.setLevel(INFO) utils.configure_loggers(debug_handler=d_h, file_handler=f_h) parent_conn, child_conn = multiprocessing.Pipe() p = multiprocessing.Process(target=visualisation.visualisation_process_f, name="display_process", args=(child_conn, LOGGER)) p.start() pynnn.setup(timestep=SIMU_TIMESTEP) init_logging("logfile", debug=True) LOGGER.info("Simulation started with command: %s", sys.argv) ## Network setup # First population p1 = pynnn.Population(100, pynnn.IF_curr_alpha, structure=pynnn.space.Grid2D()) p1.set({'tau_m': 20, 'v_rest': -65}) # Second population p2 = pynnn.Population(20, pynnn.IF_curr_alpha, cellparams={ 'tau_m': 15.0, 'cm': 0.9 }) # Projection 1 -> 2 prj1_2 = pynnn.Projection( p1, p2, pynnn.AllToAllConnector(allow_self_connections=False), target='excitatory') # I may need to make own PyNN Connector class. Otherwise, this is # neat: exponentially decaying probability of connections depends # on distance. Distance is only calculated using x and y, which # are on a toroidal topo with boundaries at 0 and 500. connector = pynnn.DistanceDependentProbabilityConnector( "exp(-abs(d))", space=pynnn.Space(axes='xy', periodic_boundaries=((0, 500), (0, 500), None))) # Alternately, the powerful connection set algebra (python CSA # module) can be used. weight_distr = pynnn.RandomDistribution(distribution='gamma', parameters=[1, 0.1]) prj1_2.randomizeWeights(weight_distr) # This one is in NEST but not in Brian: # source = pynnn.NoisyCurrentSource( # mean=100, stdev=50, dt=SIMU_TIMESTEP, # start=10.0, stop=SIMU_DURATION, rng=pynnn.NativeRNG(seed=100)) source = pynnn.DCSource(start=10.0, stop=SIMU_DURATION, amplitude=100) source.inject_into(list(p1.sample(50).all())) p1.record(to_file=False) p2.record(to_file=False) ## Build and send the visualizable network structure adapter = pynn_to_visu.PynnToVisuAdapter(LOGGER) adapter.add_pynn_population(p1) adapter.add_pynn_population(p2) adapter.add_pynn_projection(p1, p2, prj1_2.connection_manager) adapter.commit_structure() parent_conn.send(adapter.output_struct) # Number of chunks to run the simulation: n_chunks = SIMU_DURATION // SIMU_TO_VISU_MESSAGE_PERIOD last_chunk_duration = SIMU_DURATION % SIMU_TO_VISU_MESSAGE_PERIOD # Run the simulator for visu_i in xrange(n_chunks): pynnn.run(SIMU_TO_VISU_MESSAGE_PERIOD) parent_conn.send(adapter.make_activity_update_message()) LOGGER.debug("real current p1 spike counts: %s", p1.get_spike_counts().values()) if last_chunk_duration > 0: pynnn.run(last_chunk_duration) parent_conn.send(adapter.make_activity_update_message()) # Cleanup pynnn.end() # Wait for the visualisation process to terminate p.join(VISU_PROCESS_JOIN_TIMEOUT)