コード例 #1
0
    plot_spiketrains(spikes.segments[i])
    plt.subplot(2, 1, 2)
    plot_spiketrains(spike.segments[i])
    # plt.subplot(4, 1, 3)
    # plot_signal(spikes.segments[0].analogsignalarrays[0], 0)
    # plt.subplot(3, 1, 3)
    # plot_signal(spike.segments[1].analogsignalarrays[0], 0)

    # plt.xlabel("time (%s)" % spike.segments[0].analogsignalarrays[0].times.units._dimensionality.string)
    plt.setp(plt.gca().get_xticklabels(), visible=True)

    # todo: check the structure of segment

    plt.show()

    sim.reset()
    # connection.set(weight = 0.05, delay = 0.2, U = 0.5, tau_rec = 800.0, tau_facil = 0.01)
    Input_E_connection.set(weight=0.05, delay=0.5)
    # E_E_connection.set(weight = 0.05, delay = 0.2, U = 0.5, tau_rec = 800.0, tau_facil = 0.01)
    E_E_connection.set(weight=0.05,
                       delay=0.2,
                       U=0.5,
                       tau_rec=800.0,
                       tau_facil=0.01)
    print(Excinp.get('spike_times'))
    stimSpikes = RandomDistribution('uniform', low=0, high=500.0).next([1, 10])
    Excinp.set(spike_times=stimSpikes[0, :])

# spikes = Excinp.get_data()
# spike = Pexc.get_data()
コード例 #2
0
ファイル: pynn_utils_tests.py プロジェクト: GQI7FS6/pycogmo
def reset_pynn():
    pynnn.reset()
コード例 #3
0
ファイル: pynn_utils_tests.py プロジェクト: agravier/pycogmo
def reset_pynn():
    pynnn.reset()
コード例 #4
0
import pyNN.brian as sim  # can of course replace `nest` with `neuron`, `brian`, etc.
import matplotlib.pyplot as plt
from quantities import nA

sim.setup()

cell = sim.Population(1, sim.HH_cond_exp())
step_current = sim.DCSource(start=20.0, stop=80.0)
step_current.inject_into(cell)

cell.record('v')

for amp in (-0.2, -0.1, 0.0, 0.1, 0.2):
    step_current.amplitude = amp
    sim.run(100.0)
    sim.reset(annotations={"amplitude": amp * nA})

data = cell.get_data()

sim.end()

for segment in data.segments:
    vm = segment.analogsignals[0]
    plt.plot(vm.times, vm,
             label=str(segment.annotations["amplitude"]))
plt.legend(loc="upper left")
plt.xlabel("Time (%s)" % vm.times.units._dimensionality)
plt.ylabel("Membrane potential (%s)" % vm.units._dimensionality)

plt.show()