コード例 #1
0
def calcPoissonError (solname, outputdir, exactsol):

    # get aproximated solution at each node
    sol = Solution(solname, outdir=outputdir)
    uh = sol.getPhie()[0,:] 

    # compute exact solution at each node
    ue = np.zeros((np.shape(uh)[0]),dtype='float32') # exact u
    lM = sol.getLumpedMassMatrixE()                  # lumped Mass
    mesh = sol.getNodes()   
    X = mesh[:,0]
    Y = mesh[:,1]
    Z = mesh[:,2]
    ue = evalExactSolution(exactsol, X, Y, Z)   

    # compute nodal error
    err = ue - uh

    # compute the L2 norm of the error
    normeu = sol.calcL2NormError(err, lM)
    return normeu
コード例 #2
0
def viewLaplaceSolution (solname):

    lasol = Solution(solname)
    lphie = lasol.getPhie()

    # no time steps
    lphie = lphie[0,:]
    
    peshp = np.shape(lphie)[0]

    # view structured square mesh only
    numNodesX = int( sqrt(peshp) )
    numNodesY = int( sqrt(peshp) )

    # reshape for visualization
    phie = np.reshape(lphie, (numNodesX,numNodesY))

    ax = subplot(111)
    im = imshow(phie,cmap=cm.jet)
    im.set_interpolation('bilinear')
    title('Solution of the Laplace problem')
    colorbar()
    show()
コード例 #3
0
    E2t = np.zeros(m)
    E2q = np.zeros(m)
    E2i = np.zeros(m)
    EM  = np.zeros(m)
    DOF = np.zeros(m)

    # reference solutions
    triRef = Solution('/data/sim/simulacao_3/tri_10um/tri_10um')
    quaRef = Solution('/data/sim/simulacao_3/qua_10um/qua_10um')
    quaisoRef = Solution('/data/sim/simulacao_3/qua_iso_10um/qua_iso_10um')

    # convergence for triangle
    for t in xrange(len(time)):
        for i in xrange(m):
            solname = os.path.join(dataPrefix + tr_name[i], tr_name[i])
            triSol  = Solution(solname)
            E2t[i]  = triSol.getL2NormError(triRef, time[t])
            DOF[i]  = triSol.getNumberOfNodes()

        print 'Tr ', E2t

    # convergence for quadrangle (hybrid approach)
    for t in xrange(len(time)):
        for i in xrange(m):
            solname = os.path.join(dataPrefix + qd_name[i], qd_name[i])
            quaSol  = Solution(solname)
            E2q[i]  = quaSol.getL2NormError(quaRef, time[t])
            DOF[i]  = quaSol.getNumberOfNodes()

        print 'Qd ', E2q