コード例 #1
0
    def get_requested_values(cls):
        adict = WIMPModel.get_requested_values()
        del adict['constant_energy']
        del adict['constant_time']
        del adict['background_rate']
        adict['fix_l_line_ratio'] = ('Fix ratio of the Ge and Zn L-lines', False)
        adict['data_file'] = ('Name of data root file', 'temp.root')
        adict['object_name'] = ("""Name of object inside data file. 
This can be a:                                             
                                                                
TH1: the bins will be interprected as energy. 
A RooDataHist will be used to generate a binned fit.  
                                                                
TTree: with branches, 'ee_energy', 'time', 'weight', plus others.
'time' and ee_energy are both optional, it is assumed that if they
don't exist that time and energy are constant.
'weight' is optional, but when present will adjust the weight of each
entry to 'weight' in the RooDataSet.
A RooDataSet will be used to generate an unbinned fit. 
                                """, 'output_data')
        adict['data_set_cuts'] = ("""String of cuts to apply. 
This only applies if the object passed
in is a TTree (see object_name).  These cuts will be used to generate
a subset of the TTree and pass into RooDataSet.
                                  """, '')
        return adict
コード例 #2
0
 def get_requested_values(cls):
     adict = WIMPModel.get_requested_values()
     del adict['constant_energy']
     del adict['constant_time']
     del adict['wimp_mass']
     del adict['variable_quenching']
     adict['model_amplitude'] = ('Initial model amplitude', 0.1)
     return adict
コード例 #3
0
"""
#####################################

ROOT.RooRandom.randomGenerator().SetSeed(0)
ROOT.RooMsgService.instance().setSilentMode(True)
ROOT.RooMsgService.instance().setGlobalKillBelow(5)
total_mc_entries = 1000
#total_mc_entries = 10
total_entries = 400 
exponential_total = 190
basevars = BaseVariables(0, 0.1444,0.5, 3.5) 
basevars.get_time().setConstant(True)

# Set up the WIMP class
wimp_class = WIMPModel(basevars, 
                       mass_of_wimp = wimp_mass,
                       kilograms=0.4,
                       constant_quenching=False)
model = wimp_class.get_model()

# Set up the background class
background = TestModel(basevars)
list_of_models, list_of_coefficients = \
                          background.get_list_components()

exp_coef = list_of_coefficients.at(
             list_of_coefficients.index("exp_coef_"))
flat_coef = list_of_coefficients.at(
              list_of_coefficients.index("flat_coef_"))
exp_coef.setVal(exponential_total)
flat_coef.setVal(180)
#flat_coef.setMin(-5)
コード例 #4
0
    def initialize(self):

        if self.is_initialized: return
        from pyWIMP.DMModels.wimp_model import WIMPModel
        from pyWIMP.DMModels.base_model import BaseVariables
        from pyWIMP.DMModels.flat_model import FlatModel

        self.total_counts = int(self.mass_of_detector*
                                self.background_rate*
                                (self.energy_max-self.threshold)*
                                self.total_time*365)
        self.basevars = BaseVariables(time_beginning=0,
            time_in_years=self.total_time,
            energy_threshold=self.threshold,
            energy_max=self.energy_max)

        if self.num_energy_bins != 0: self.basevars.get_energy().setBins(int(self.num_energy_bins))
        if self.num_time_bins != 0: self.basevars.get_time().setBins(int(self.num_time_bins))
        self.variables = ROOT.RooArgSet()
        if self.constant_time:
            self.basevars.get_time().setVal(0)
            self.basevars.get_time().setConstant(True)
        else:
            self.variables.add(self.basevars.get_time())
        if not self.constant_energy:
            self.variables.add(self.basevars.get_energy())


        self.calculation_class = \
            ec.ExclusionCalculation(self.exit_manager)
 
        # This is where we define our models
        self.backgroundClass = TritiumDecayModel(self.basevars, 
                                                 self.tritium_exposure_time, 
                                                 self.tritium_activation_rate,
                                                 self.mass_of_detector,
                                                 self.background_rate)

        # This model is already an extended model
        self.background_model =  self.backgroundClass.get_model()

        self.background_extend = self.background_model
        if not self.do_axioelectric:
            # The following has not been normalized to per-nucleon yet.
            self.model_normal = ROOT.RooRealVar("model_normal", 
                                                "WIMP-nucleus #sigma", 
                                                0, -1e-15, 0.1, 'pb')
            self.wimpClass = WIMPModel(self.basevars,
                mass_of_wimp=self.wimp_mass,
                kilograms = self.mass_of_detector,
                constant_quenching=(not self.variable_quenching))

            self.model = self.wimpClass.get_model()
            self.norm = self.wimpClass.get_normalization().getVal()
            self.model_extend = ROOT.RooExtendPdf("model_extend", 
                                                   "model_extend", 
                                                   self.model, 
                                                   self.model_normal)
        else:
            # wimpClass is of course a misnomer here, but we use it for now
            self.wimpClass = GaussianSignalModel(self.basevars,
                                                 mean_of_signal=self.axion_mass)
 
            self.model_normal = ROOT.RooRealVar("model_normal", 
                                                "Counts", 
                                                0, -10, 1000)
            # This is where we define our model
            self.model = self.wimpClass.get_model()
            self.norm = self.wimpClass.get_normalization()*self.model.getNorm(
                        ROOT.RooArgSet(self.basevars.get_energy())) 

            # We actually want the inverse of the normaliation, since this is later multiplied 
            # and we want the total counts in a particular gaussian.
            self.norm = 1./self.norm
            self.model_extend = ROOT.RooExtendPdf("model_extend", 
                                                   "model_extend", 
                                                   self.model, 
                                                   self.model_normal)


        self.added_pdf = ROOT.RooAddPdf("b+s", 
                                        "Background + Signal", 
                                        ROOT.RooArgList(
                                        self.background_extend, 
                                        self.model_extend))
 
        self.test_variable = self.model_normal
        self.data_set_model = self.background_extend
        self.fitting_model = self.added_pdf
        self.is_initialized = True
コード例 #5
0
    def initialize(self):
        # The background model is the same, but now we switch it to the data model
        from pyWIMP.DMModels.low_energy_background import LowEnergyBackgroundModel
        from pyWIMP.DMModels.base_model import BaseVariables
        from pyWIMP.DMModels.wimp_model import WIMPModel
        self.total_counts = None
        open_file = ROOT.TFile(self.data_file)
        self.workspace = open_file.Get(self.object_name)
        # Do some introspection, we can handle TH1s, and RooAbsData 
        self.basevars = BaseVariables(time_beginning=0,
            time_in_years=self.total_time,
            energy_threshold=self.threshold,
            energy_max=self.energy_max,
            use_tag=False)

        self.variables = ROOT.RooArgSet()

        if self.workspace.InheritsFrom(ROOT.TH1.Class()):
            self.variables.add(self.basevars.get_energy())
            self.basevars.get_time().setVal(0)
            self.basevars.get_time().setConstant(True)

            self.data_set_model = ROOT.RooDataHist("data", "data", 
                                    ROOT.RooArgList(self.basevars.get_energy()),
                                    self.workspace)
        elif self.workspace.InheritsFrom(ROOT.TTree.Class()):
            # Default to setting them to constant.
            self.basevars.get_time().setVal(0)
            self.basevars.get_time().setConstant(True)
            self.basevars.get_energy().setVal(0)
            self.basevars.get_energy().setConstant(True)
            if self.num_energy_bins != 0:
                self.basevars.get_energy().setBins(int(self.num_energy_bins))
            if self.num_time_bins != 0:
                self.basevars.get_time().setBins(int(self.num_time_bins))

            branches = self.workspace.GetListOfBranches()
            efficiency = "" 
            branch_arg_list = []

            for i in range(branches.GetEntries()):
                branch_name = branches[i].GetName()
                if branch_name == "ee_energy": 
                    self.basevars.get_energy().setConstant(False)
                    self.variables.add(self.basevars.get_energy())
                    branch_arg_list.append((self.basevars.get_energy(), 
                                            branch_name))
                if branch_name == "time": 
                    self.basevars.get_time().setConstant(False)
                    self.variables.add(self.basevars.get_time())
                    branch_arg_list.append((self.basevars.get_time(), 
                                            branch_name))
                elif branch_name == "weight":
                    efficiency = branch_name 
                    self.variables.add(self.basevars.get_weighting())

            if not self.data_set_cuts:
                # Load the DataSet the easy way
                self.data_set_model = ROOT.RooDataSet("data", "data", 
                                        self.workspace,
                                        self.variables,
                                        efficiency)
            else:
                # Otherwise, we have to get the correct events,
                # which requires stepping through all events
                self.data_set_model = ROOT.RooDataSet("data", "data", 
                                        self.variables,
                                        efficiency)
                # Get an event list with the correct cut events
                ROOT.gROOT.cd()
                el = ROOT.TEventList("el", "el")
                cuts = self.data_set_cuts
                iter = self.variables.createIterator()
                while 1: 
                    obj = iter.Next()
                    if not obj: break
                    if obj.GetTitle() == 'weight': continue
                    cuts += " && ((%s <= %f) && (%s >= %f))" % (obj.GetName(),
                                                                obj.getMax(),
                                                                obj.GetName(),
                                                                obj.getMin())
                self.workspace.Draw(">>%s" % el.GetName(), cuts, "goff")
                event_list = [el.GetEntry(i) for i in range(el.GetN())] 
                #event_list = [i for i in range(self.workspace.GetEntries())] 
                for j in event_list: 
                    self.workspace.GetEntry(j)
                    eff_val = 1.
                    if efficiency: 
                        eff_val = getattr(self.workspace, efficiency)
                    for val in branch_arg_list: 
                        val[0].setVal(getattr(self.workspace, val[1]))
                    if eff_val != 0: self.data_set_model.add(self.variables, eff_val)
                     
        else:
            print "Requested: %s, isn't a TTree or TH1!" % self.data_set_name
            raise TypeError

        if self.num_energy_bins != 0 or self.num_time_bins != 0:
            self.original_data_set = self.data_set_model
            self.data_set_model = self.original_data_set.binnedClone()

        if self.data_set_model.isWeighted(): print "Data set is weighted"
        print "Data set has %i entries." % self.data_set_model.sumEntries()


        if not self.do_axioelectric:
            self.wimpClass = WIMPModel(self.basevars,
                mass_of_wimp=self.wimp_mass,
                kilograms = self.mass_of_detector,
                constant_quenching=(not self.variable_quenching))
 
            # This is where we define our model
            self.model = self.wimpClass.get_model()
            #self.model = self.wimpClass.get_simple_model()
            self.norm = self.wimpClass.get_normalization().getVal()

            # The following has not been normalized to per-nucleon yet.
            self.model_normal = ROOT.RooRealVar("model_normal", 
                                                "WIMP-nucleus #sigma", 
                                                1, -10, 100, 
                                                "pb")
            self.model_extend = ROOT.RooExtendPdf("model_extend", 
                                                   "model_extend", 
                                                   self.model, 
                                                   self.model_normal)
            # Getting the number of events for a model_normal of 1 
            # This gives us number of events per model_normal value
            scaler = self.model_extend.expectedEvents(self.variables)
            self.model_normal.setMax(2*self.data_set_model.sumEntries()/scaler)
        else:
            # wimpClass is of course a misnomer here, but we use it for now
            self.wimpClass = GaussianSignalModel(self.basevars,
                                                 mean_of_signal=self.axion_mass)
 
            self.model_normal = ROOT.RooRealVar("model_normal", 
                                                "Counts", 
                                                0, -10, 1000)
            # This is where we define our model
            self.model = self.wimpClass.get_model()
            self.norm = self.wimpClass.get_normalization()*self.model.getNorm(
                        ROOT.RooArgSet(self.basevars.get_energy())) 

            # We actually want the inverse of the normaliation, since this is later multiplied 
            # and we want the total counts in a particular gaussian.
            self.norm = 1./self.norm
            self.model_extend = ROOT.RooExtendPdf("model_extend", 
                                                   "model_extend", 
                                                   self.model, 
                                                   self.model_normal)

        self.is_initialized = True

        self.calculation_class = \
            dat.DataCalculation(self.exit_manager)
        self.low_energy = LowEnergyBackgroundModel(self.basevars, 
                                                   use_ratio=self.fix_l_line_ratio)

        list_of_models, list_of_coefficients = self.low_energy.get_list_components()
        self.extended_models = []
        i = 0
        while 1: 
            amod = list_of_models.at(i)
            avar = list_of_coefficients.at(i)
            if not amod: break
            i += 1
            extend = ROOT.RooExtendPdf("extend%s" % amod.GetName(),
                                       "extend%s" % amod.GetName(),
                                       amod, avar)
            self.extended_models.append(extend)
        temp_list = ROOT.RooArgList()
        temp_list.add(self.model_extend)
        for amod in self.extended_models:
            temp_list.add(amod)
        self.added_pdf = ROOT.RooAddPdf("b+s", 
                                        "Background + Signal", 
                                        temp_list)
        self.test_variable = self.model_normal
        self.fitting_model = self.added_pdf
コード例 #6
0
Initialization stuff
"""
#####################################

ROOT.RooRandom.randomGenerator().SetSeed(0)
ROOT.RooMsgService.instance().setSilentMode(True)
ROOT.RooMsgService.instance().setGlobalKillBelow(5)
total_mc_entries = 500
total_mc_entries = 400

basevars = BaseVariables(0, 0.14887063655, 0.5, 3.5)
basevars.get_time().setConstant(True)

# Set up the WIMP class
wimp_class = WIMPModel(basevars,
                       mass_of_wimp=wimp_mass,
                       kilograms=0.4,
                       constant_quenching=False)
model = wimp_class.get_model()
normalization = wimp_class.get_normalization().getVal()
# Set up the background class
low_energy = LowEnergyBackgroundModel(basevars)
low_energy_model = low_energy.get_model()

list_of_models, list_of_coefficients = low_energy.get_list_components()
background_normal = ROOT.RooRealVar("flat_normal", "Background event number",
                                    0, 1000)
background_extend = ROOT.RooExtendPdf("background_extend", "background_extend",
                                      low_energy_model, background_normal)

#flat_coef.setMin(-5)
#exp_coef.setMin(-5)
コード例 #7
0
Initialization stuff
"""
#####################################

ROOT.RooRandom.randomGenerator().SetSeed(0)
ROOT.RooMsgService.instance().setSilentMode(True)
ROOT.RooMsgService.instance().setGlobalKillBelow(5)
total_mc_entries = 500
total_mc_entries = 400

basevars = BaseVariables(0, 0.14887063655,0.5, 3.5) 
basevars.get_time().setConstant(True)

# Set up the WIMP class
wimp_class = WIMPModel(basevars, 
                       mass_of_wimp = wimp_mass,
                       kilograms=0.4,
                       constant_quenching=False)
model = wimp_class.get_model()
normalization = wimp_class.get_normalization().getVal()
# Set up the background class
low_energy = LowEnergyBackgroundModel(basevars)
low_energy_model = low_energy.get_model()

list_of_models, list_of_coefficients = low_energy.get_list_components()
background_normal = ROOT.RooRealVar("flat_normal", 
                                    "Background event number", 
                                    0,
                                    1000)
background_extend = ROOT.RooExtendPdf("background_extend", 
                                                   "background_extend", 
                                                   low_energy_model,