def blocker_debugging(C, A, B): # returned the tuples that are thrown away by the blocker dbq = em.debug_blocker(C, A, B, output_size = 100) return dbq
'price_range', 'number_of_reviews' ]) C2 = rb2.block_tables(A, B, l_output_attrs=[ 'ID', 'name', 'address', 'ratingValue', 'price_range', 'number_of_reviews' ], r_output_attrs=[ 'ID', 'name', 'address', 'ratingValue', 'price_range', 'number_of_reviews' ]) # In[64]: C2 # In[50]: C # In[56]: dbg = em.debug_blocker(C, A, B, output_size=200) # In[57]: dbg # In[ ]:
show_progress=True) print len(candidate_pairs) #em.to_csv_metadata(reduced_pairs,'C:/Users/Daniel/Documents/UW/838/Project/Stage3/data/pairs_after_ob_title_and_artist.csv') block_f = em.get_features_for_blocking(songs, tracks) block_c = em.get_attr_corres(songs, tracks) block_t = em.get_tokenizers_for_blocking() block_s = em.get_sim_funs_for_blocking() atypes1 = em.get_attr_types(songs) atypes2 = em.get_attr_types(tracks) block_f = em.get_features(songs, tracks, atypes1, atypes2, block_c, block_t, block_s) rb = em.RuleBasedBlocker() rb.add_rule(["name_name_jac_dlm_dc0_dlm_dc0(ltuple, rtuple) < 0.3"], block_f) candidate_pairs = rb.block_candset(candidate_pairs, show_progress=True) print len(candidate_pairs) #em.to_csv_metadata(candidate_pairs,'C:/Users/Daniel/Documents/UW/838/Project/Stage3/data/candidate_pairs.csv') print candidate_pairs.head() dbg = em.debug_blocker(candidate_pairs, songs, tracks, output_size=50) print dbg.head(20)
# Combining blocker1 and blocker2 results to get candidate set C (which is named F in our code). # In[252]: F = em.combine_blocker_outputs_via_union([C, E]) # Running debugger to see if F is good. 41/50 outputs of debugger are bad matches.Therefore we are proceeding with the above # blocker # In[14]: dbg = em.debug_blocker(F, A, B, output_size=50) dbg.head() # In[253]: F.to_csv("F.csv",index=False,encoding = 'cp1252') # In[254]: F.shape
# In[96]: ## Number of tuple pairs in C2 len(C2) # <h1> Debug Blocker Output # # The number of tuple pairs considered for matching is reduced to (from 10536512 to 953), # but we would want to make sure that the blocker did not drop any potential matches. # We could debug the blocker output in py_entitymatching as follows: # In[97]: # Debug blocker output dbg = em.debug_blocker(C2, A, B, output_size=200) # In[98]: # Display first few tuple pairs from the debug_blocker's output dbg.head() # From the debug blocker's output we observe that the current blocker drops quite a few potential matches. # We would want to update the blocking sequence to avoid dropping these potential matches. # # For the considered dataset, we know that for the restaurants to match, the address should be similar. # We could use rule based blocker with address similarity for this purpose. # Finally, we would want to union the outputs from the name similarity blocker and the address blocker to get a consolidated candidate set. # # In[99]:
def main(): # WELCOME TO MY MAGELLAN RUN SCRIPT print("\n-------------WELCOME TO MY MAGELLAN RUN SCRIPT-------------\n") # Get the datasets directory datasets_dir = 'B:\McMaster\CAS 764 - Advance Topics in Data Management\Project\Data\\' print("- Dataset directory: " + datasets_dir) print("- List of folders/files: ") print(os.listdir(datasets_dir)) print("- Please enter new dataset folder name:") datasets_dir += input() print("- Dataset directory set to: " + datasets_dir) dateset_dir_files = os.listdir(datasets_dir) print("- List of files in dataset folder: ") print(dateset_dir_files) # Get the path of the input table A print("- Enter an index for Table A file (0-x):") file_index_A = input() filename_A = dateset_dir_files[int(file_index_A)] print("Table A file set to: " + filename_A) # Get the path of the input table path_A = datasets_dir + os.sep + filename_A # Get the path of the input table B print("- Enter an index for Table B file (0-x):") file_index_B = input() filename_B = dateset_dir_files[int(file_index_B)] print("Table B file set to: " + filename_B) # Get the path of the input table path_B = datasets_dir + os.sep + filename_B # Print Table A column names A = em.read_csv_metadata(path_A) print("- List of columns of Table A: ") print(list(A.columns)) # Get the Table A id/primary key column name print('- Enter Table A primary key column index (ex. 0):') pk_A_index = input() pk_A = A.columns[int(pk_A_index)] # Print Table B column names B = em.read_csv_metadata(path_B) print("- List of columns of Table B: ") print(list(B.columns)) # Get the Table B id/primary key column name print('- Enter Table B primary key column index (ex. 0):') pk_B_index = input() pk_B = A.columns[int(pk_A_index)] # READING TABLES AND SETTING METADATA print("\n-------------READING TABLES AND SETTING METADATA-------------\n") # Both read csv and set metadata id as ID column #A = em.read_csv_metadata(path_A, key=pk_A) #B = em.read_csv_metadata(path_B, key=pk_B) em.set_key(A, pk_A) em.set_key(B, pk_B) # Number of tables print('- Number of tuples in A: ' + str(len(A))) print('- Number of tuples in B: ' + str(len(B))) print('- Number of tuples in A X B (i.e the cartesian product): ' + str(len(A) * len(B))) # Print first 5 tuples of tables print(A.head()) print(B.head()) # Display the keys of the input tables print("- Table A primary key: " + em.get_key(A)) print("- Table B primary key: " + em.get_key(B)) # DOWNSAMPLING print("\n-------------DOWNSAMPING-------------\n") print("- Do you want to use downsampling? (y or n):") print("- Table A: " + str(len(A)) + ", Table B: " + str(len(B))) print("- NOTE: Recommended if both tables have 100K+ tuples.") is_downsample = input() if (is_downsample == 'y'): print("- Size of the downsampled tables (ex. 200):") downsample_size = input() # If the tables are large we can downsample the tables like this A1, B1 = em.down_sample(A, B, downsample_size, 1, show_progress=False) print("- Length of Table A1" + len(A1)) print("- Length of Table B1" + len(B1)) # BLOCKING print("\n-------------BLOCKING-------------\n") print("- Do you want to use blocking? (y or n):") is_blocking = input() if (is_blocking == 'y'): # Check if the 2 tables column names are the same if (list(A.columns) == list(B.columns)): C_attr_eq = [] # Attr Equ blocker result list C_overlap = [] # Overlap blocker result list C_blackbox = [] # BlackBox blocker result list # Left and right table attribute prefixes l_prefix = "ltable_" r_prefix = "rtable_" print("\n- List of columns: ") print(list(A.columns)) # Labeling output table column selection print( "\n- Enter the indexes of columns that you want to see in labeling table (0-" + str(len(A.columns) - 1) + "):") out_attr = [] for i in range(1, len(A.columns)): print("- Finish with empty character(enter+enter) " + str(i)) add_to_attr = input() if (add_to_attr == ''): break # Get indexes from user and add columns into out_attr list out_attr.append(A.columns[int(add_to_attr)]) # Print output attributes print(out_attr) # Loop for adding/combining new blockers while (True): # Blocker selection print( "\n- Do yo want to use Attribute Equivalence[ab] (same), Overlap[ob] (similar) or Blackbox[bb] blocker:" ) blocker_selection = input() # ----- Attribute Equivalence Blocker ----- if (blocker_selection == 'ab'): # Create attribute equivalence blocker ab = em.AttrEquivalenceBlocker() # Counter for indexes attr_eq_counter = 0 # Check if Overlap Blocker used before if (C_overlap and not C_overlap[-1].empty): print( "\n- Do you want to work on Overlap Blocker candidate set or not (y or n):" ) use_cand_set = input() if (use_cand_set == 'y'): C_attr_eq.append( C_overlap[-1]) # Add last output of ob attr_eq_counter += 1 # For skipping block_table function in first time # Check if BlackBox Blocker used before if (C_blackbox and not C_blackbox[-1].empty): print( "\n- Do you want to work on BlackBox Blocker candidate set or not (y or n):" ) use_cand_set = input() if (use_cand_set == 'y'): C_attr_eq.append( C_blackbox[-1]) # Add last output of ob attr_eq_counter += 1 # For skipping block_table function in first time # Loop for adding more columns/attributes into Attr Equ blocker while (True): # List column names print("\n- List of columns: ") print(list(A.columns)) # Get blocking attribute/column print( "\n- Which column (w/ index) to use for equivalence blocking? (ex. 1):" ) blocking_col_index = input() blocking_col = A.columns[int(blocking_col_index)] print( "\n- Do you want to add missing values into blocking? (y or n):" ) add_missing_val = input() if (add_missing_val == 'y'): add_missing_val = True else: add_missing_val = False # First time using Attr Equ blocker, use A and B if (attr_eq_counter == 0): # Block using selected (blocking_col) attribute on A and B C_attr_eq.append( ab.block_tables(A, B, blocking_col, blocking_col, l_output_attrs=out_attr, r_output_attrs=out_attr, l_output_prefix=l_prefix, r_output_prefix=r_prefix, allow_missing=add_missing_val, n_jobs=-1)) # Not first time, add new constraint into previous candidate set else: # Block using selected (blocking_col) attribute on previous (last=-1) candidate set C_attr_eq.append( ab.block_candset(C_attr_eq[-1], l_block_attr=blocking_col, r_block_attr=blocking_col, allow_missing=add_missing_val, n_jobs=-1, show_progress=False)) # DEBUG BLOCKING print( "\n- Attribute Equivalence Blocker Debugging...\n") # Debug last blocker output dbg = em.debug_blocker(C_attr_eq[-1], A, B, output_size=200, n_jobs=-1) # Display first few tuple pairs from the debug_blocker's output print("\n- Blocking debug results:") print(dbg.head()) attr_eq_counter += 1 # Increase the counter # Continue to use Attribute Equivalence Blocker or not print("\n- Length of candidate set: " + str(len(C_attr_eq[-1]))) print( "- Add another column into Attribute Equivalence Blocker[a] OR Reset last blocker's output[r]:" ) ab_next_operation = input() if (not ab_next_operation.islower()): ab_next_operation = ab_next_operation.lower( ) # Lower case # Continue using Attribute Equivalence Blocker if (ab_next_operation == 'a'): continue # Reset/remove last blocker's output from candidate set list elif (ab_next_operation == 'r'): del C_attr_eq[-1] print("\n- Last blocker output removed!") print( "- Continue to use Attribute Equivalence Blocker (y or n):" ) ab_next_operation = input() if (ab_next_operation == 'n'): break # Finish Attribute Equivalence Blocker else: break # ----- Overlap Blocker ----- elif (blocker_selection == 'ob'): # Create attribute equivalence blocker ob = em.OverlapBlocker() # Counter for indexes overlap_counter = 0 # Check if Attribute Equivalence Blocker used before if (C_attr_eq and not C_attr_eq[-1].empty): print( "\n- Do you want to work on Attribute Equivalence Blocker candidate set or not (y or n):" ) use_cand_set = input() if (use_cand_set == 'y'): C_overlap.append( C_attr_eq[-1]) # Add last output of ab overlap_counter += 1 # For skipping block_table function in first time # Check if BlackBox Blocker used before if (C_blackbox and not C_blackbox[-1].empty): print( "\n- Do you want to work on BlackBox Blocker candidate set or not (y or n):" ) use_cand_set = input() if (use_cand_set == 'y'): C_overlap.append( C_blackbox[-1]) # Add last output of ob overlap_counter += 1 # For skipping block_table function in first time # Loop for adding more columns/attributes into Overlap blocker while (True): # List column names print("- List of columns: ") print(list(A.columns)) # Get blocking attribute/column print( "- Which column (w/ index) to use for overlap blocking? (ex. 1):" ) blocking_col_index = input() blocking_col = A.columns[int(blocking_col_index)] print( "\n- Do you want to add missing values into blocking? (y or n):" ) add_missing_val = input() if (add_missing_val == 'y'): add_missing_val = True else: add_missing_val = False print("\n- Use words as a token? (y or n):") use_world_level = input() if (use_world_level == 'y'): use_world_level = True q_gram_value = None else: use_world_level = False print( "\n- Q-gram q value (ex. 2 --> JO HN SM IT H):" ) q_gram_value = input() q_gram_value = int(q_gram_value) print( "\n- Enter the overlap size (# of tokens that overlap):" ) overlap_size = input() overlap_size = int(overlap_size) print( "\n- Do you want to remove (a, an, the) from token set? (y or n):" ) use_stop_words = input() if (use_stop_words == 'y'): use_stop_words = True else: use_stop_words = False # First time using Overlap blocker, use A and B if (overlap_counter == 0): # Block using selected (blocking_col) attribute on A and B C_overlap.append( ob.block_tables(A, B, blocking_col, blocking_col, l_output_attrs=out_attr, r_output_attrs=out_attr, l_output_prefix=l_prefix, r_output_prefix=r_prefix, rem_stop_words=use_stop_words, q_val=q_gram_value, word_level=use_world_level, overlap_size=overlap_size, allow_missing=add_missing_val, n_jobs=-1)) # Not first time, add new constraint into previous candidate set else: # Block using selected (blocking_col) attribute on previous (last=-1) candidate set C_overlap.append( ob.block_candset(C_overlap[-1], l_overlap_attr=blocking_col, r_overlap_attr=blocking_col, rem_stop_words=use_stop_words, q_val=q_gram_value, word_level=use_world_level, overlap_size=overlap_size, allow_missing=add_missing_val, n_jobs=-1, show_progress=False)) # DEBUG BLOCKING print("\n- Overlap Blocker Debugging...\n") # Debug last blocker output dbg = em.debug_blocker(C_overlap[-1], A, B, output_size=200, n_jobs=-1) # Display first few tuple pairs from the debug_blocker's output print("\n- Blocking debug results:") print(dbg.head()) overlap_counter += 1 # Increase the counter # Continue to use Attribute Equivalence Blocker or not print("\n- Length of candidate set: " + str(len(C_overlap[-1]))) print( "- Add another column into Overlap Blocker[a] OR Reset last blocker's output[r]:" ) ob_next_operation = input() if (not ob_next_operation.islower()): ob_next_operation = ob_next_operation.lower( ) # Lower case # Continue using Overlap Blocker if (ob_next_operation == 'a'): continue # Reset/remove last blocker's output from candidate set list elif (ob_next_operation == 'r'): del C_overlap[-1] print("\n- Last blocker output removed!") print( "- Continue to use Overlap Blocker (y or n):") ob_next_operation = input() if (ob_next_operation == 'n'): break # Finish Overlap Blocker else: break # ----- BlackBox Blocker ----- elif (blocker_selection == 'bb'): # Create attribute equivalence blocker bb = em.BlackBoxBlocker() # Counter for indexes blackbox_counter = 0 # Check if Overlap Blocker used before if (C_attr_eq and not C_attr_eq[-1].empty): print( "\n- Do you want to work on Attribute Equivalence Blocker candidate set or not (y or n):" ) use_cand_set = input() if (use_cand_set == 'y'): C_blackbox.append( C_attr_eq[-1]) # Add last output of ob blackbox_counter += 1 # For skipping block_table function in first time # Check if Overlap Blocker used before if (C_overlap and not C_overlap[-1].empty): print( "\n- Do you want to work on Overlap Blocker candidate set or not (y or n):" ) use_cand_set = input() if (use_cand_set == 'y'): C_blackbox.append( C_overlap[-1]) # Add last output of ob blackbox_counter += 1 # For skipping block_table function in first time # Loop for adding more columns/attributes into BlackBox blocker while (True): # Set function bb.set_black_box_function( number_10_percent_comparision) # First time using Overlap blocker, use A and B if (overlap_counter == 0): # Block on A and B C_blackbox.append( bb.block_tables(A, B, l_output_attrs=out_attr, r_output_attrs=out_attr, l_output_prefix=l_prefix, r_output_prefix=r_prefix, n_jobs=-1, show_progress=False)) # Not first time, add new constraint into previous candidate set else: # Block on previous (last=-1) candidate set C_blackbox.append( bb.block_candset(C_blackbox[-1], n_jobs=-1, show_progress=False)) # DEBUG BLOCKING print("\n- BlackBox Blocker Debugging...\n") # Debug last blocker output dbg = em.debug_blocker(C_blackbox[-1], A, B, output_size=200, n_jobs=-1) # Display first few tuple pairs from the debug_blocker's output print("\n- Blocking debug results:") print(dbg.head()) blackbox_counter += 1 # Increase the counter # Continue to use Attribute Equivalence Blocker or not print("\n- Length of candidate set: " + str(len(C_blackbox[-1]))) print( "- Add another column into BlackBox Blocker[a] OR Reset last blocker's output[r]:" ) bb_next_operation = input() if (not bb_next_operation.islower()): bb_next_operation = bb_next_operation.lower( ) # Lower case # Continue using Overlap Blocker if (bb_next_operation == 'a'): continue # Reset/remove last blocker's output from candidate set list elif (bb_next_operation == 'r'): del C_blackbox[-1] print("\n- Last blocker output removed!") print( "- Continue to use BlackBox Blocker (y or n):") bb_next_operation = input() if (bb_next_operation == 'n'): break # Finish BlackBox Blocker else: break print("\n- Do you want to add/use another blocker? (y or n):") blocker_decision = input() if (blocker_decision == 'n'): break print( "\n- Which blocker output you want to use? (Attr Equ-ab, Overlap-ob, BlackBox-bb, Union-un)" ) blocker_output_selection = input() # Attribute Equ if (blocker_output_selection == "ab"): C = C_attr_eq[-1] # Overlap elif (blocker_output_selection == "ob"): C = C_overlap[-1] # Overlap elif (blocker_output_selection == "bb"): C = C_blackbox[-1] # Union of blockers elif (blocker_output_selection == "un"): # Combine/union blockers candidate sets print("\n- TODO: Unions Attr Equ and Overlap only!") if (C_attr_eq and C_overlap and not C_attr_eq[-1].empty and not C_overlap[-1].empty): # Both blocker types used C = em.combine_blocker_outputs_via_union( [C_attr_eq[-1], C_overlap[-1]]) print( "\n- Blockers candidate set outputs combined via union." ) else: # Error C = [] print( "\n- ERROR: Candidate set C is empty! Check blockers' results." ) # Error else: C = [] print( "\n- ERROR: Candidate set C is empty! Check blockers' results." ) print("\n- Length of C: " + str(len(C))) else: print( "\n- 2 Tables column names are different, they must be the same" ) print(list(A.columns)) print(list(B.columns)) # SAMPLING&LABELING print("\n-------------SAMPLING&LABELING-------------\n") print("- Choose sampling size (eg. 450):") sampling_size = input() while (int(sampling_size) > len(C)): print("- Sampling size cannot be bigger than " + str(len(C))) sampling_size = input() # Sample candidate set S = em.sample_table(C, int(sampling_size)) print("- New window will pop-up for " + sampling_size + " sized table.") print("- If there is a match, change tuple's label value to 1") # Label S G = em.label_table(S, 'label') #DEVELOPMENT AND EVALUATION print("\n-------------DEVELOPMENT AND EVALUATION-------------\n") # Split S into development set (I) and evaluation set (J) IJ = em.split_train_test(G, train_proportion=0.7, random_state=0) I = IJ['train'] J = IJ['test'] #SELECTING THE BEST MATCHER print("\n-------------SELECTING THE BEST MATCHER-------------\n") # Create a set of ML-matchers dt = em.DTMatcher(name='DecisionTree', random_state=0) svm = em.SVMMatcher(name='SVM', random_state=0) rf = em.RFMatcher(name='RF', random_state=0) lg = em.LogRegMatcher(name='LogReg', random_state=0) ln = em.LinRegMatcher(name='LinReg') nb = em.NBMatcher(name='NaiveBayes') print( "\n- 6 different ML-matchers created: DL, SVM, RF, LogReg, LinReg, NB") print("\n- Creating features...") # Generate features feature_table = em.get_features_for_matching( A, B, validate_inferred_attr_types=False) print("\n- Features list:") # List the names of the features generated print(feature_table['feature_name']) print("\n- Converting the development set to feature vectors...") # Convert the I into a set of feature vectors using feature_table H = em.extract_feature_vecs(I, feature_table=feature_table, attrs_after='label', show_progress=False) print("\n- Feature table first rows:") # Display first few rows print(H.head()) # Primary key of tables = prefix + pk = l_id, r_id ltable_pk = l_prefix + pk_A rtable_pk = r_prefix + pk_B # Check if the feature vectors contain missing values # A return value of True means that there are missing values is_missing_values = any(pd.notnull(H)) print("\n- Does feature vector have missing values: " + str(is_missing_values)) if (is_missing_values): # Impute feature vectors with the mean of the column values. H = em.impute_table( H, exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'], strategy='mean', val_all_nans=0.0) #print("\n- Feature table first rows:") # Display first few rows #print(H.head()) print("- Impute table function used for missing values.") print("\n- Selecting the best matcher using cross-validation...") # Select the best ML matcher using CV result = em.select_matcher( matchers=[dt, rf, svm, ln, lg, nb], table=H, exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'], k=5, target_attr='label', metric_to_select_matcher='f1', random_state=0) print("\n- Results:") print(result['cv_stats']) #DEBUGGING THE MATCHER print("\n-------------DEBUGGING THE MATCHER-------------\n") # Split feature vectors into train and test UV = em.split_train_test(H, train_proportion=0.5) U = UV['train'] V = UV['test'] # Debug decision tree using GUI em.vis_debug_rf(rf, U, V, exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'], target_attr='label') print("\n- Do you want to add another feature?") H = em.extract_feature_vecs(I, feature_table=feature_table, attrs_after='label', show_progress=False) # Check if the feature vectors contain missing values # A return value of True means that there are missing values is_missing_values = any(pd.notnull(H)) print("\n- Does feature vector have missing values: " + str(is_missing_values)) if (is_missing_values): # Impute feature vectors with the mean of the column values. H = em.impute_table( H, exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'], strategy='mean') print("\n- Feature table first rows:") # Display first few rows print(H.head()) # Select the best ML matcher using CV result = em.select_matcher( [dt, rf, svm, ln, lg, nb], table=H, exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'], k=5, target_attr='label', metric_to_select_matcher='f1', random_state=0) print("\n- Results:") print(result['cv_stats']) #EVALUATING THE MATCHING OUTPUT print("\n-------------EVALUATING THE MATCHING OUTPUT-------------\n") print("\n- Converting the evaluation set to feature vectors...") # Convert J into a set of feature vectors using feature table L = em.extract_feature_vecs(J, feature_table=feature_table, attrs_after='label', show_progress=False) # Check if the feature vectors contain missing values # A return value of True means that there are missing values is_missing_values = any(pd.notnull(L)) print("\n- Does feature vector have missing values: " + str(is_missing_values)) if (is_missing_values): # Impute feature vectors with the mean of the column values. L = em.impute_table( L, exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'], strategy='mean') print("\n- Feature table first rows:") # Display first few rows print(L.head()) print("\n- Training the selected matcher...") # Train using feature vectors from I rf.fit(table=H, exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'], target_attr='label') print("\n- Predicting the matches...") # Predict on L predictions = rf.predict( table=L, exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'], append=True, target_attr='predicted', inplace=False) print("\n- Evaluating the prediction...") # Evaluate the predictions eval_result = em.eval_matches(predictions, 'label', 'predicted') print(em.print_eval_summary(eval_result)) print("\n- Time elapsed:") print(datetime.now() - startTime) print("\n-------------END-------------\n")
#******************************** Add Rules ************************* # b4.add_rule(['Category_Category_jac_dlm_dc0_dlm_dc0(ltuple, rtuple) < 0.5'], block_f) b4.add_rule(['Author_Author_jac_dlm_dc0_dlm_dc0(ltuple, rtuple) < 0.2'], block_f) # b4.add_rule([' Publisher_Publisher_jac_dlm_dc0_dlm_dc0(ltuple, rtuple) < 0.3'], block_f) b4.add_rule([' Name_Name_cos_dlm_dc0_dlm_dc0(ltuple, rtuple) < 0.3'], block_f) b4.add_rule(['Author_Author_mel(ltuple, rtuple) < 0.5'], block_f) # New Rule # b4.add_rule(['name_name_lev_sim(ltuple, rtuple) < 0.8'],block_f) # b4.add_rule(['Category_Category_lev_sim(ltuple, rtuple) < 0.5'], block_f) column_names = ['ID','Name', 'Category','Author','Price','Series','Pages','Publisher','Date','Language','ISBN_10','ISBN_13','Dimensions','Weight'] #******************* Blocking step********************** C = b4.block_tables(A, B, l_output_attrs=column_names, r_output_attrs=column_names) print(len(C)) C.to_csv('Data/C.csv', index = False) #**************************** Debug Blocking****************************** D = em.debug_blocker(C, A, B) print(len(D)) D.to_csv('Data/D.csv', index = False) #***********************Block further using candidate set C***************************