コード例 #1
0
ファイル: blocker.py プロジェクト: is4ac/cs839-data-science
def blocker_debugging(C, A, B):
    # returned the tuples that are thrown away by the blocker
    dbq = em.debug_blocker(C, A, B, output_size = 100)
    return dbq
コード例 #2
0
                          'price_range', 'number_of_reviews'
                      ])
C2 = rb2.block_tables(A,
                      B,
                      l_output_attrs=[
                          'ID', 'name', 'address', 'ratingValue',
                          'price_range', 'number_of_reviews'
                      ],
                      r_output_attrs=[
                          'ID', 'name', 'address', 'ratingValue',
                          'price_range', 'number_of_reviews'
                      ])

# In[64]:

C2

# In[50]:

C

# In[56]:

dbg = em.debug_blocker(C, A, B, output_size=200)

# In[57]:

dbg

# In[ ]:
コード例 #3
0
ファイル: block.py プロジェクト: wkfunk/838_project
                                   show_progress=True)

print len(candidate_pairs)

#em.to_csv_metadata(reduced_pairs,'C:/Users/Daniel/Documents/UW/838/Project/Stage3/data/pairs_after_ob_title_and_artist.csv')

block_f = em.get_features_for_blocking(songs, tracks)
block_c = em.get_attr_corres(songs, tracks)
block_t = em.get_tokenizers_for_blocking()
block_s = em.get_sim_funs_for_blocking()

atypes1 = em.get_attr_types(songs)
atypes2 = em.get_attr_types(tracks)

block_f = em.get_features(songs, tracks, atypes1, atypes2, block_c, block_t,
                          block_s)

rb = em.RuleBasedBlocker()
rb.add_rule(["name_name_jac_dlm_dc0_dlm_dc0(ltuple, rtuple) < 0.3"], block_f)

candidate_pairs = rb.block_candset(candidate_pairs, show_progress=True)

print len(candidate_pairs)

#em.to_csv_metadata(candidate_pairs,'C:/Users/Daniel/Documents/UW/838/Project/Stage3/data/candidate_pairs.csv')

print candidate_pairs.head()

dbg = em.debug_blocker(candidate_pairs, songs, tracks, output_size=50)
print dbg.head(20)
# Combining blocker1 and blocker2 results to get candidate set C (which is named F in our code).

# In[252]:


F = em.combine_blocker_outputs_via_union([C, E])


# Running debugger to see if F is good. 41/50 outputs of debugger are bad matches.Therefore we are proceeding with the above 
# blocker

# In[14]:


dbg = em.debug_blocker(F, A, B, output_size=50)
dbg.head()


# In[253]:


F.to_csv("F.csv",index=False,encoding = 'cp1252')


# In[254]:


F.shape

コード例 #5
0
# In[96]:

## Number of tuple pairs in C2
len(C2)

# <h1> Debug Blocker Output
#

# The number of tuple pairs considered for matching is reduced to  (from 10536512 to 953),
# but we would want to make sure that the blocker did not drop any potential matches.
# We could debug the blocker output in py_entitymatching as follows:

# In[97]:

# Debug blocker output
dbg = em.debug_blocker(C2, A, B, output_size=200)

# In[98]:

# Display first few tuple pairs from the debug_blocker's output
dbg.head()

# From the debug blocker's output we observe that the current blocker drops quite a few potential matches.
# We would want to update the blocking sequence to avoid dropping these potential matches.
#
# For the considered dataset, we know that for the restaurants to match, the address should be similar.
# We could use rule based blocker with address similarity for this purpose.
# Finally, we would want to union the outputs from the name similarity blocker and the address blocker to get a consolidated candidate set.
#

# In[99]:
コード例 #6
0
def main():
    # WELCOME TO MY MAGELLAN RUN SCRIPT
    print("\n-------------WELCOME TO MY MAGELLAN RUN SCRIPT-------------\n")

    # Get the datasets directory
    datasets_dir = 'B:\McMaster\CAS 764 - Advance Topics in Data Management\Project\Data\\'
    print("- Dataset directory: " + datasets_dir)
    print("- List of folders/files: ")
    print(os.listdir(datasets_dir))
    print("- Please enter new dataset folder name:")
    datasets_dir += input()
    print("- Dataset directory set to: " + datasets_dir)

    dateset_dir_files = os.listdir(datasets_dir)
    print("- List of files in dataset folder: ")
    print(dateset_dir_files)

    # Get the path of the input table A
    print("- Enter an index for Table A file (0-x):")
    file_index_A = input()
    filename_A = dateset_dir_files[int(file_index_A)]
    print("Table A file set to: " + filename_A)

    # Get the path of the input table
    path_A = datasets_dir + os.sep + filename_A

    # Get the path of the input table B
    print("- Enter an index for Table B file (0-x):")
    file_index_B = input()
    filename_B = dateset_dir_files[int(file_index_B)]
    print("Table B file set to: " + filename_B)

    # Get the path of the input table
    path_B = datasets_dir + os.sep + filename_B

    # Print Table A column names
    A = em.read_csv_metadata(path_A)
    print("- List of columns of Table A: ")
    print(list(A.columns))
    # Get the Table A id/primary key column name
    print('- Enter Table A primary key column index (ex. 0):')
    pk_A_index = input()
    pk_A = A.columns[int(pk_A_index)]

    # Print Table B column names
    B = em.read_csv_metadata(path_B)
    print("- List of columns of Table B: ")
    print(list(B.columns))
    # Get the Table B id/primary key column name
    print('- Enter Table B primary key column index (ex. 0):')
    pk_B_index = input()
    pk_B = A.columns[int(pk_A_index)]

    # READING TABLES AND SETTING METADATA
    print("\n-------------READING TABLES AND SETTING METADATA-------------\n")

    # Both read csv and set metadata id as ID column
    #A = em.read_csv_metadata(path_A, key=pk_A)
    #B = em.read_csv_metadata(path_B, key=pk_B)
    em.set_key(A, pk_A)
    em.set_key(B, pk_B)

    # Number of tables
    print('- Number of tuples in A: ' + str(len(A)))
    print('- Number of tuples in B: ' + str(len(B)))
    print('- Number of tuples in A X B (i.e the cartesian product): ' +
          str(len(A) * len(B)))

    # Print first 5 tuples of tables
    print(A.head())
    print(B.head())

    # Display the keys of the input tables
    print("- Table A primary key: " + em.get_key(A))
    print("- Table B primary key: " + em.get_key(B))

    # DOWNSAMPLING
    print("\n-------------DOWNSAMPING-------------\n")

    print("- Do you want to use downsampling? (y or n):")
    print("- Table A: " + str(len(A)) + ", Table B: " + str(len(B)))
    print("- NOTE: Recommended if both tables have 100K+ tuples.")
    is_downsample = input()
    if (is_downsample == 'y'):
        print("- Size of the downsampled tables (ex. 200):")
        downsample_size = input()
        # If the tables are large we can downsample the tables like this
        A1, B1 = em.down_sample(A, B, downsample_size, 1, show_progress=False)
        print("- Length of Table A1" + len(A1))
        print("- Length of Table B1" + len(B1))

    # BLOCKING
    print("\n-------------BLOCKING-------------\n")

    print("- Do you want to use blocking? (y or n):")
    is_blocking = input()
    if (is_blocking == 'y'):

        # Check if the 2 tables column names are the same
        if (list(A.columns) == list(B.columns)):
            C_attr_eq = []  # Attr Equ blocker result list
            C_overlap = []  # Overlap blocker result list
            C_blackbox = []  # BlackBox blocker result list

            # Left and right table attribute prefixes
            l_prefix = "ltable_"
            r_prefix = "rtable_"

            print("\n- List of columns: ")
            print(list(A.columns))
            # Labeling output table column selection
            print(
                "\n- Enter the indexes of columns that you want to see in labeling table (0-"
                + str(len(A.columns) - 1) + "):")
            out_attr = []
            for i in range(1, len(A.columns)):
                print("- Finish with empty character(enter+enter) " + str(i))
                add_to_attr = input()
                if (add_to_attr == ''):
                    break
                # Get indexes from user and add columns into out_attr list
                out_attr.append(A.columns[int(add_to_attr)])

            # Print output attributes
            print(out_attr)

            # Loop for adding/combining new blockers
            while (True):
                # Blocker selection
                print(
                    "\n- Do yo want to use Attribute Equivalence[ab] (same), Overlap[ob] (similar) or Blackbox[bb] blocker:"
                )
                blocker_selection = input()

                # ----- Attribute Equivalence Blocker -----
                if (blocker_selection == 'ab'):
                    # Create attribute equivalence blocker
                    ab = em.AttrEquivalenceBlocker()
                    # Counter for indexes
                    attr_eq_counter = 0
                    # Check if Overlap Blocker used before
                    if (C_overlap and not C_overlap[-1].empty):
                        print(
                            "\n- Do you want to work on Overlap Blocker candidate set or not (y or n):"
                        )
                        use_cand_set = input()
                        if (use_cand_set == 'y'):
                            C_attr_eq.append(
                                C_overlap[-1])  # Add last output of ob
                            attr_eq_counter += 1  # For skipping block_table function in first time

                    # Check if BlackBox Blocker used before
                    if (C_blackbox and not C_blackbox[-1].empty):
                        print(
                            "\n- Do you want to work on BlackBox Blocker candidate set or not (y or n):"
                        )
                        use_cand_set = input()
                        if (use_cand_set == 'y'):
                            C_attr_eq.append(
                                C_blackbox[-1])  # Add last output of ob
                            attr_eq_counter += 1  # For skipping block_table function in first time

                    # Loop for adding more columns/attributes into Attr Equ blocker
                    while (True):
                        # List column names
                        print("\n- List of columns: ")
                        print(list(A.columns))
                        # Get blocking attribute/column
                        print(
                            "\n- Which column (w/ index) to use for equivalence blocking? (ex. 1):"
                        )
                        blocking_col_index = input()
                        blocking_col = A.columns[int(blocking_col_index)]

                        print(
                            "\n- Do you want to add missing values into blocking? (y or n):"
                        )
                        add_missing_val = input()
                        if (add_missing_val == 'y'):
                            add_missing_val = True
                        else:
                            add_missing_val = False

                        # First time using Attr Equ blocker, use A and B
                        if (attr_eq_counter == 0):
                            # Block using selected (blocking_col) attribute on A and B
                            C_attr_eq.append(
                                ab.block_tables(A,
                                                B,
                                                blocking_col,
                                                blocking_col,
                                                l_output_attrs=out_attr,
                                                r_output_attrs=out_attr,
                                                l_output_prefix=l_prefix,
                                                r_output_prefix=r_prefix,
                                                allow_missing=add_missing_val,
                                                n_jobs=-1))
                        # Not first time, add new constraint into previous candidate set
                        else:
                            # Block using selected (blocking_col) attribute on previous (last=-1) candidate set
                            C_attr_eq.append(
                                ab.block_candset(C_attr_eq[-1],
                                                 l_block_attr=blocking_col,
                                                 r_block_attr=blocking_col,
                                                 allow_missing=add_missing_val,
                                                 n_jobs=-1,
                                                 show_progress=False))

                        # DEBUG BLOCKING
                        print(
                            "\n- Attribute Equivalence Blocker Debugging...\n")
                        # Debug last blocker output
                        dbg = em.debug_blocker(C_attr_eq[-1],
                                               A,
                                               B,
                                               output_size=200,
                                               n_jobs=-1)

                        # Display first few tuple pairs from the debug_blocker's output
                        print("\n- Blocking debug results:")
                        print(dbg.head())

                        attr_eq_counter += 1  # Increase the counter

                        # Continue to use Attribute Equivalence Blocker or not
                        print("\n- Length of candidate set: " +
                              str(len(C_attr_eq[-1])))
                        print(
                            "- Add another column into Attribute Equivalence Blocker[a] OR Reset last blocker's output[r]:"
                        )
                        ab_next_operation = input()
                        if (not ab_next_operation.islower()):
                            ab_next_operation = ab_next_operation.lower(
                            )  # Lower case
                        # Continue using Attribute Equivalence Blocker
                        if (ab_next_operation == 'a'):
                            continue
                        # Reset/remove last blocker's output from candidate set list
                        elif (ab_next_operation == 'r'):
                            del C_attr_eq[-1]
                            print("\n- Last blocker output removed!")
                            print(
                                "- Continue to use Attribute Equivalence Blocker (y or n):"
                            )
                            ab_next_operation = input()
                            if (ab_next_operation == 'n'):
                                break
                        # Finish Attribute Equivalence Blocker
                        else:
                            break

                # ----- Overlap Blocker -----
                elif (blocker_selection == 'ob'):
                    # Create attribute equivalence blocker
                    ob = em.OverlapBlocker()
                    # Counter for indexes
                    overlap_counter = 0
                    # Check if Attribute Equivalence Blocker used before
                    if (C_attr_eq and not C_attr_eq[-1].empty):
                        print(
                            "\n- Do you want to work on Attribute Equivalence Blocker candidate set or not (y or n):"
                        )
                        use_cand_set = input()
                        if (use_cand_set == 'y'):
                            C_overlap.append(
                                C_attr_eq[-1])  # Add last output of ab
                            overlap_counter += 1  # For skipping block_table function in first time

                    # Check if BlackBox Blocker used before
                    if (C_blackbox and not C_blackbox[-1].empty):
                        print(
                            "\n- Do you want to work on BlackBox Blocker candidate set or not (y or n):"
                        )
                        use_cand_set = input()
                        if (use_cand_set == 'y'):
                            C_overlap.append(
                                C_blackbox[-1])  # Add last output of ob
                            overlap_counter += 1  # For skipping block_table function in first time

                    # Loop for adding more columns/attributes into Overlap blocker
                    while (True):
                        # List column names
                        print("- List of columns: ")
                        print(list(A.columns))
                        # Get blocking attribute/column
                        print(
                            "- Which column (w/ index) to use for overlap blocking? (ex. 1):"
                        )
                        blocking_col_index = input()
                        blocking_col = A.columns[int(blocking_col_index)]

                        print(
                            "\n- Do you want to add missing values into blocking? (y or n):"
                        )
                        add_missing_val = input()
                        if (add_missing_val == 'y'):
                            add_missing_val = True
                        else:
                            add_missing_val = False

                        print("\n- Use words as a token? (y or n):")
                        use_world_level = input()
                        if (use_world_level == 'y'):
                            use_world_level = True
                            q_gram_value = None
                        else:
                            use_world_level = False
                            print(
                                "\n- Q-gram q value (ex. 2 --> JO HN SM IT H):"
                            )
                            q_gram_value = input()
                            q_gram_value = int(q_gram_value)

                        print(
                            "\n- Enter the overlap size (# of tokens that overlap):"
                        )
                        overlap_size = input()
                        overlap_size = int(overlap_size)

                        print(
                            "\n- Do you want to remove (a, an, the) from token set? (y or n):"
                        )
                        use_stop_words = input()
                        if (use_stop_words == 'y'):
                            use_stop_words = True
                        else:
                            use_stop_words = False

                        # First time using Overlap blocker, use A and B
                        if (overlap_counter == 0):
                            # Block using selected (blocking_col) attribute on A and B
                            C_overlap.append(
                                ob.block_tables(A,
                                                B,
                                                blocking_col,
                                                blocking_col,
                                                l_output_attrs=out_attr,
                                                r_output_attrs=out_attr,
                                                l_output_prefix=l_prefix,
                                                r_output_prefix=r_prefix,
                                                rem_stop_words=use_stop_words,
                                                q_val=q_gram_value,
                                                word_level=use_world_level,
                                                overlap_size=overlap_size,
                                                allow_missing=add_missing_val,
                                                n_jobs=-1))
                        # Not first time, add new constraint into previous candidate set
                        else:
                            # Block using selected (blocking_col) attribute on previous (last=-1) candidate set
                            C_overlap.append(
                                ob.block_candset(C_overlap[-1],
                                                 l_overlap_attr=blocking_col,
                                                 r_overlap_attr=blocking_col,
                                                 rem_stop_words=use_stop_words,
                                                 q_val=q_gram_value,
                                                 word_level=use_world_level,
                                                 overlap_size=overlap_size,
                                                 allow_missing=add_missing_val,
                                                 n_jobs=-1,
                                                 show_progress=False))

                        # DEBUG BLOCKING
                        print("\n- Overlap Blocker Debugging...\n")
                        # Debug last blocker output
                        dbg = em.debug_blocker(C_overlap[-1],
                                               A,
                                               B,
                                               output_size=200,
                                               n_jobs=-1)

                        # Display first few tuple pairs from the debug_blocker's output
                        print("\n- Blocking debug results:")
                        print(dbg.head())

                        overlap_counter += 1  # Increase the counter

                        # Continue to use Attribute Equivalence Blocker or not
                        print("\n- Length of candidate set: " +
                              str(len(C_overlap[-1])))
                        print(
                            "- Add another column into Overlap Blocker[a] OR Reset last blocker's output[r]:"
                        )
                        ob_next_operation = input()
                        if (not ob_next_operation.islower()):
                            ob_next_operation = ob_next_operation.lower(
                            )  # Lower case
                        # Continue using Overlap Blocker
                        if (ob_next_operation == 'a'):
                            continue
                        # Reset/remove last blocker's output from candidate set list
                        elif (ob_next_operation == 'r'):
                            del C_overlap[-1]
                            print("\n- Last blocker output removed!")
                            print(
                                "- Continue to use Overlap Blocker (y or n):")
                            ob_next_operation = input()
                            if (ob_next_operation == 'n'):
                                break
                        # Finish Overlap Blocker
                        else:
                            break

                # ----- BlackBox Blocker -----
                elif (blocker_selection == 'bb'):
                    # Create attribute equivalence blocker
                    bb = em.BlackBoxBlocker()
                    # Counter for indexes
                    blackbox_counter = 0
                    # Check if Overlap Blocker used before
                    if (C_attr_eq and not C_attr_eq[-1].empty):
                        print(
                            "\n- Do you want to work on Attribute Equivalence Blocker candidate set or not (y or n):"
                        )
                        use_cand_set = input()
                        if (use_cand_set == 'y'):
                            C_blackbox.append(
                                C_attr_eq[-1])  # Add last output of ob
                            blackbox_counter += 1  # For skipping block_table function in first time

                    # Check if Overlap Blocker used before
                    if (C_overlap and not C_overlap[-1].empty):
                        print(
                            "\n- Do you want to work on Overlap Blocker candidate set or not (y or n):"
                        )
                        use_cand_set = input()
                        if (use_cand_set == 'y'):
                            C_blackbox.append(
                                C_overlap[-1])  # Add last output of ob
                            blackbox_counter += 1  # For skipping block_table function in first time

                    # Loop for adding more columns/attributes into BlackBox blocker
                    while (True):
                        # Set function
                        bb.set_black_box_function(
                            number_10_percent_comparision)

                        # First time using Overlap blocker, use A and B
                        if (overlap_counter == 0):
                            # Block on A and B
                            C_blackbox.append(
                                bb.block_tables(A,
                                                B,
                                                l_output_attrs=out_attr,
                                                r_output_attrs=out_attr,
                                                l_output_prefix=l_prefix,
                                                r_output_prefix=r_prefix,
                                                n_jobs=-1,
                                                show_progress=False))
                        # Not first time, add new constraint into previous candidate set
                        else:
                            # Block on previous (last=-1) candidate set
                            C_blackbox.append(
                                bb.block_candset(C_blackbox[-1],
                                                 n_jobs=-1,
                                                 show_progress=False))

                        # DEBUG BLOCKING
                        print("\n- BlackBox Blocker Debugging...\n")
                        # Debug last blocker output
                        dbg = em.debug_blocker(C_blackbox[-1],
                                               A,
                                               B,
                                               output_size=200,
                                               n_jobs=-1)

                        # Display first few tuple pairs from the debug_blocker's output
                        print("\n- Blocking debug results:")
                        print(dbg.head())

                        blackbox_counter += 1  # Increase the counter

                        # Continue to use Attribute Equivalence Blocker or not
                        print("\n- Length of candidate set: " +
                              str(len(C_blackbox[-1])))
                        print(
                            "- Add another column into BlackBox Blocker[a] OR Reset last blocker's output[r]:"
                        )
                        bb_next_operation = input()
                        if (not bb_next_operation.islower()):
                            bb_next_operation = bb_next_operation.lower(
                            )  # Lower case
                        # Continue using Overlap Blocker
                        if (bb_next_operation == 'a'):
                            continue
                        # Reset/remove last blocker's output from candidate set list
                        elif (bb_next_operation == 'r'):
                            del C_blackbox[-1]
                            print("\n- Last blocker output removed!")
                            print(
                                "- Continue to use BlackBox Blocker (y or n):")
                            bb_next_operation = input()
                            if (bb_next_operation == 'n'):
                                break
                        # Finish BlackBox Blocker
                        else:
                            break

                print("\n- Do you want to add/use another blocker? (y or n):")
                blocker_decision = input()
                if (blocker_decision == 'n'):
                    break

            print(
                "\n- Which blocker output you want to use? (Attr Equ-ab, Overlap-ob, BlackBox-bb, Union-un)"
            )
            blocker_output_selection = input()
            # Attribute Equ
            if (blocker_output_selection == "ab"):
                C = C_attr_eq[-1]
            # Overlap
            elif (blocker_output_selection == "ob"):
                C = C_overlap[-1]
                # Overlap
            elif (blocker_output_selection == "bb"):
                C = C_blackbox[-1]
            # Union of blockers
            elif (blocker_output_selection == "un"):
                # Combine/union blockers candidate sets
                print("\n- TODO: Unions Attr Equ and Overlap only!")
                if (C_attr_eq and C_overlap and not C_attr_eq[-1].empty and
                        not C_overlap[-1].empty):  # Both blocker types used
                    C = em.combine_blocker_outputs_via_union(
                        [C_attr_eq[-1], C_overlap[-1]])
                    print(
                        "\n- Blockers candidate set outputs combined via union."
                    )
                else:  # Error
                    C = []
                    print(
                        "\n- ERROR: Candidate set C is empty! Check blockers' results."
                    )
            # Error
            else:
                C = []
                print(
                    "\n- ERROR: Candidate set C is empty! Check blockers' results."
                )
            print("\n- Length of C: " + str(len(C)))

        else:
            print(
                "\n- 2 Tables column names are different, they must be the same"
            )
            print(list(A.columns))
            print(list(B.columns))

    # SAMPLING&LABELING
    print("\n-------------SAMPLING&LABELING-------------\n")

    print("- Choose sampling size (eg. 450):")
    sampling_size = input()
    while (int(sampling_size) > len(C)):
        print("- Sampling size cannot be bigger than " + str(len(C)))
        sampling_size = input()

    # Sample  candidate set
    S = em.sample_table(C, int(sampling_size))

    print("- New window will pop-up for " + sampling_size + " sized table.")
    print("- If there is a match, change tuple's label value to 1")

    # Label S
    G = em.label_table(S, 'label')

    #DEVELOPMENT AND EVALUATION
    print("\n-------------DEVELOPMENT AND EVALUATION-------------\n")

    # Split S into development set (I) and evaluation set (J)
    IJ = em.split_train_test(G, train_proportion=0.7, random_state=0)
    I = IJ['train']
    J = IJ['test']

    #SELECTING THE BEST MATCHER
    print("\n-------------SELECTING THE BEST MATCHER-------------\n")

    # Create a set of ML-matchers
    dt = em.DTMatcher(name='DecisionTree', random_state=0)
    svm = em.SVMMatcher(name='SVM', random_state=0)
    rf = em.RFMatcher(name='RF', random_state=0)
    lg = em.LogRegMatcher(name='LogReg', random_state=0)
    ln = em.LinRegMatcher(name='LinReg')
    nb = em.NBMatcher(name='NaiveBayes')

    print(
        "\n- 6 different ML-matchers created: DL, SVM, RF, LogReg, LinReg, NB")

    print("\n- Creating features...")
    # Generate features
    feature_table = em.get_features_for_matching(
        A, B, validate_inferred_attr_types=False)

    print("\n- Features list:")
    # List the names of the features generated
    print(feature_table['feature_name'])

    print("\n- Converting the development set to feature vectors...")
    # Convert the I into a set of feature vectors using feature_table
    H = em.extract_feature_vecs(I,
                                feature_table=feature_table,
                                attrs_after='label',
                                show_progress=False)

    print("\n- Feature table first rows:")
    # Display first few rows
    print(H.head())

    # Primary key of tables = prefix + pk = l_id, r_id
    ltable_pk = l_prefix + pk_A
    rtable_pk = r_prefix + pk_B

    # Check if the feature vectors contain missing values
    # A return value of True means that there are missing values
    is_missing_values = any(pd.notnull(H))
    print("\n- Does feature vector have missing values: " +
          str(is_missing_values))
    if (is_missing_values):
        # Impute feature vectors with the mean of the column values.
        H = em.impute_table(
            H,
            exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'],
            strategy='mean',
            val_all_nans=0.0)
        #print("\n- Feature table first rows:")
        # Display first few rows
        #print(H.head())
        print("- Impute table function used for missing values.")

    print("\n- Selecting the best matcher using cross-validation...")
    # Select the best ML matcher using CV
    result = em.select_matcher(
        matchers=[dt, rf, svm, ln, lg, nb],
        table=H,
        exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'],
        k=5,
        target_attr='label',
        metric_to_select_matcher='f1',
        random_state=0)
    print("\n- Results:")
    print(result['cv_stats'])

    #DEBUGGING THE MATCHER
    print("\n-------------DEBUGGING THE MATCHER-------------\n")

    #  Split feature vectors into train and test
    UV = em.split_train_test(H, train_proportion=0.5)
    U = UV['train']
    V = UV['test']

    # Debug decision tree using GUI
    em.vis_debug_rf(rf,
                    U,
                    V,
                    exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'],
                    target_attr='label')

    print("\n- Do you want to add another feature?")

    H = em.extract_feature_vecs(I,
                                feature_table=feature_table,
                                attrs_after='label',
                                show_progress=False)

    # Check if the feature vectors contain missing values
    # A return value of True means that there are missing values
    is_missing_values = any(pd.notnull(H))
    print("\n- Does feature vector have missing values: " +
          str(is_missing_values))
    if (is_missing_values):
        # Impute feature vectors with the mean of the column values.
        H = em.impute_table(
            H,
            exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'],
            strategy='mean')
        print("\n- Feature table first rows:")
        # Display first few rows
        print(H.head())

    # Select the best ML matcher using CV
    result = em.select_matcher(
        [dt, rf, svm, ln, lg, nb],
        table=H,
        exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'],
        k=5,
        target_attr='label',
        metric_to_select_matcher='f1',
        random_state=0)

    print("\n- Results:")
    print(result['cv_stats'])

    #EVALUATING THE MATCHING OUTPUT
    print("\n-------------EVALUATING THE MATCHING OUTPUT-------------\n")

    print("\n- Converting the evaluation set to feature vectors...")
    # Convert J into a set of feature vectors using feature table
    L = em.extract_feature_vecs(J,
                                feature_table=feature_table,
                                attrs_after='label',
                                show_progress=False)

    # Check if the feature vectors contain missing values
    # A return value of True means that there are missing values
    is_missing_values = any(pd.notnull(L))
    print("\n- Does feature vector have missing values: " +
          str(is_missing_values))
    if (is_missing_values):
        # Impute feature vectors with the mean of the column values.
        L = em.impute_table(
            L,
            exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'],
            strategy='mean')
        print("\n- Feature table first rows:")
        # Display first few rows
        print(L.head())

    print("\n- Training the selected matcher...")
    # Train using feature vectors from I
    rf.fit(table=H,
           exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'],
           target_attr='label')

    print("\n- Predicting the matches...")
    # Predict on L
    predictions = rf.predict(
        table=L,
        exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'],
        append=True,
        target_attr='predicted',
        inplace=False)

    print("\n- Evaluating the prediction...")
    # Evaluate the predictions
    eval_result = em.eval_matches(predictions, 'label', 'predicted')
    print(em.print_eval_summary(eval_result))

    print("\n- Time elapsed:")
    print(datetime.now() - startTime)

    print("\n-------------END-------------\n")
コード例 #7
0
#******************************** Add Rules *************************
# b4.add_rule(['Category_Category_jac_dlm_dc0_dlm_dc0(ltuple, rtuple) < 0.5'], block_f)
b4.add_rule(['Author_Author_jac_dlm_dc0_dlm_dc0(ltuple, rtuple) < 0.2'], block_f)
# b4.add_rule([' Publisher_Publisher_jac_dlm_dc0_dlm_dc0(ltuple, rtuple) < 0.3'], block_f)
b4.add_rule([' Name_Name_cos_dlm_dc0_dlm_dc0(ltuple, rtuple) < 0.3'], block_f)
b4.add_rule(['Author_Author_mel(ltuple, rtuple) < 0.5'], block_f)


# New Rule
# b4.add_rule(['name_name_lev_sim(ltuple, rtuple) < 0.8'],block_f)
# b4.add_rule(['Category_Category_lev_sim(ltuple, rtuple) < 0.5'], block_f)

column_names = ['ID','Name', 'Category','Author','Price','Series','Pages','Publisher','Date','Language','ISBN_10','ISBN_13','Dimensions','Weight']
#******************* Blocking step**********************
C = b4.block_tables(A, B, l_output_attrs=column_names, r_output_attrs=column_names)

print(len(C))
C.to_csv('Data/C.csv', index = False)


#**************************** Debug Blocking******************************

D = em.debug_blocker(C, A, B)
print(len(D))
D.to_csv('Data/D.csv', index = False)



#***********************Block further using candidate set C***************************