def main(): A = em.read_csv_metadata('../Data/A_imdb.csv', key='id') B = em.read_csv_metadata('../Data/B_tmdb.csv', key='id') ab = em.AttrEquivalenceBlocker() shared_attributes = ['title', 'directors', 'release_year', 'languages'] C = ab.block_tables(A, B, 'directors', 'directors', l_output_attrs=shared_attributes, r_output_attrs=shared_attributes) # Take a sample of 10 pairs S = em.sample_table(C, 100) print(S) G = em.label_table(S, label_column_name='gold_labels') train_test = em.split_train_test(G, train_proportion=0.5) train, test = train_test['train'], train_test['test'] # Get feature for matching match_f = em.get_features_for_matching(A, B) H = em.extract_feature_vecs(train, attrs_before=['ltable_title', 'rtable_title'], feature_table=match_f, attrs_after=['gold_labels']) H.fillna(value=0, inplace=True) print(H) # Specifying Matchers and Performing Matching. dt = em.DTMatcher(max_depth=5) # A decision tree matcher. # Train the matcher dt.fit(table=H, exclude_attrs=[ '_id', 'ltable_id', 'rtable_id', 'ltable_title', 'rtable_title', 'gold_labels' ], target_attr='gold_labels') # Predict F = em.extract_feature_vecs(test, attrs_before=['ltable_title', 'rtable_title'], feature_table=match_f, attrs_after=['gold_labels']) F.fillna(value=0, inplace=True) print(F) pred_table = dt.predict(table=F, exclude_attrs=[ '_id', 'ltable_id', 'rtable_id', 'ltable_title', 'rtable_title', 'gold_labels' ], target_attr='predicted_labels', return_probs=True, probs_attr='proba', append=True, inplace=True) print(pred_table) eval_summary = em.eval_matches(pred_table, 'gold_labels', 'predicted_labels') em.print_eval_summary(eval_summary)
C = bb.block_candset(C) len(C) bb.set_black_box_function(first_address_number_match) C = bb.block_candset(C) len(C) bb.set_black_box_function(first_phone_number_match) C = bb.block_candset(C) len(C) """ print("\n- Sampling and Labeling...") S = em.sample_table(C, 50) G = em.label_table(S, 'label') IJ = em.split_train_test(G, train_proportion=0.7, random_state=0) I = IJ['train'] J = IJ['test'] ltable_pk = "ltable_" + pk_A rtable_pk = "rtable_" + pk_B dt = em.DTMatcher(name='DecisionTree', random_state=0) svm = em.SVMMatcher(name='SVM', random_state=0) rf = em.RFMatcher(name='RF', random_state=0) lg = em.LogRegMatcher(name='LogReg', random_state=0) ln = em.LinRegMatcher(name='LinReg') nb = em.NBMatcher(name='NaiveBayes')
def main(): A = em.read_csv_metadata('ltable.csv', key="ltable_id", encoding='ISO-8859-1') B = em.read_csv_metadata('rtable.csv', key="rtable_id", encoding='ISO-8859-1') ob = em.OverlapBlocker() C = ob.block_tables( A, B, 'title', 'title', l_output_attrs=['title', 'category', 'brand', 'modelno', 'price'], r_output_attrs=['title', 'category', 'brand', 'modelno', 'price'], overlap_size=1, show_progress=False) S = em.sample_table(C, 450) G = em.read_csv_metadata("train.csv", key='id', ltable=A, rtable=B, fk_ltable='ltable_id', fk_rtable='rtable_id') feature_table = em.get_features_for_matching( A, B, validate_inferred_attr_types=False) G = em.label_table(S, 'label') attrs_from_table = [ 'ltable_title', 'ltable_category', 'ltable_brand', 'ltable_modelno', 'ltable_price', 'rtable_title', 'rtable_category', 'rtable_brand', 'rtable_modelno', 'rtable_price' ] H = em.extract_feature_vecs(G, feature_table=feature_table, attrs_before=attrs_from_table, attrs_after='label', show_progress=False) H.fillna('0', inplace=True) # H = em.impute_table( # H, exclude_attrs=['_id', 'ltable_ltable_id', 'rtable_rtable_id','label'], strategy='mean') rf = em.RFMatcher() attrs_to_be_excluded = [] attrs_to_be_excluded.extend( ['_id', 'ltable_ltable_id', 'rtable_rtable_id', 'label']) attrs_to_be_excluded.extend(attrs_from_table) rf.fit(table=H, exclude_attrs=attrs_to_be_excluded, target_attr='label') attrs_from_table = [ 'ltable_title', 'ltable_category', 'ltable_brand', 'ltable_modelno', 'ltable_price', 'rtable_title', 'rtable_category', 'rtable_brand', 'rtable_modelno', 'rtable_price' ] L = em.extract_feature_vecs(C, feature_table=feature_table, attrs_before=attrs_from_table, show_progress=False, n_jobs=-1) attrs_to_be_excluded = [] attrs_to_be_excluded.extend( ['_id', 'ltable_ltable_id', 'rtable_rtable_id']) attrs_to_be_excluded.extend(attrs_from_table) predictions = rf.predict(table=L, exclude_attrs=attrs_to_be_excluded, append=True, target_attr='predicted', inplace=False) dataset = pd.DataFrame({"id": G[0]['id'], 'label': predictions['label']}) dataset.to_csv("./prediction2.csv", index=False)
# # # <h1> Sampling and labeling the candidate set # First, we randomly sample 350 tuple pairs for labeling purposes. # In[105]: ##Sample candidate set S = em.sample_table(C4, 350) # In[23]: ##Label S G = em.label_table(S, 'gold_labels') # Load labeled data fom previous session # In[105]: G = em.load_object('./GoldenData.pkl') len(G) # In[106]: ## Loading G into em catalog em.set_fk_ltable(G, 'ltable_ID') em.set_fk_rtable(G, 'rtable_ID') em.set_key(G, '_id')
def main(): # WELCOME TO MY MAGELLAN RUN SCRIPT print("\n-------------WELCOME TO MY MAGELLAN RUN SCRIPT-------------\n") # Get the datasets directory datasets_dir = 'B:\McMaster\CAS 764 - Advance Topics in Data Management\Project\Data\\' print("- Dataset directory: " + datasets_dir) print("- List of folders/files: ") print(os.listdir(datasets_dir)) print("- Please enter new dataset folder name:") datasets_dir += input() print("- Dataset directory set to: " + datasets_dir) dateset_dir_files = os.listdir(datasets_dir) print("- List of files in dataset folder: ") print(dateset_dir_files) # Get the path of the input table A print("- Enter an index for Table A file (0-x):") file_index_A = input() filename_A = dateset_dir_files[int(file_index_A)] print("Table A file set to: " + filename_A) # Get the path of the input table path_A = datasets_dir + os.sep + filename_A # Get the path of the input table B print("- Enter an index for Table B file (0-x):") file_index_B = input() filename_B = dateset_dir_files[int(file_index_B)] print("Table B file set to: " + filename_B) # Get the path of the input table path_B = datasets_dir + os.sep + filename_B # Print Table A column names A = em.read_csv_metadata(path_A) print("- List of columns of Table A: ") print(list(A.columns)) # Get the Table A id/primary key column name print('- Enter Table A primary key column index (ex. 0):') pk_A_index = input() pk_A = A.columns[int(pk_A_index)] # Print Table B column names B = em.read_csv_metadata(path_B) print("- List of columns of Table B: ") print(list(B.columns)) # Get the Table B id/primary key column name print('- Enter Table B primary key column index (ex. 0):') pk_B_index = input() pk_B = A.columns[int(pk_A_index)] # READING TABLES AND SETTING METADATA print("\n-------------READING TABLES AND SETTING METADATA-------------\n") # Both read csv and set metadata id as ID column #A = em.read_csv_metadata(path_A, key=pk_A) #B = em.read_csv_metadata(path_B, key=pk_B) em.set_key(A, pk_A) em.set_key(B, pk_B) # Number of tables print('- Number of tuples in A: ' + str(len(A))) print('- Number of tuples in B: ' + str(len(B))) print('- Number of tuples in A X B (i.e the cartesian product): ' + str(len(A) * len(B))) # Print first 5 tuples of tables print(A.head()) print(B.head()) # Display the keys of the input tables print("- Table A primary key: " + em.get_key(A)) print("- Table B primary key: " + em.get_key(B)) # DOWNSAMPLING print("\n-------------DOWNSAMPING-------------\n") print("- Do you want to use downsampling? (y or n):") print("- Table A: " + str(len(A)) + ", Table B: " + str(len(B))) print("- NOTE: Recommended if both tables have 100K+ tuples.") is_downsample = input() if (is_downsample == 'y'): print("- Size of the downsampled tables (ex. 200):") downsample_size = input() # If the tables are large we can downsample the tables like this A1, B1 = em.down_sample(A, B, downsample_size, 1, show_progress=False) print("- Length of Table A1" + len(A1)) print("- Length of Table B1" + len(B1)) # BLOCKING print("\n-------------BLOCKING-------------\n") print("- Do you want to use blocking? (y or n):") is_blocking = input() if (is_blocking == 'y'): # Check if the 2 tables column names are the same if (list(A.columns) == list(B.columns)): C_attr_eq = [] # Attr Equ blocker result list C_overlap = [] # Overlap blocker result list C_blackbox = [] # BlackBox blocker result list # Left and right table attribute prefixes l_prefix = "ltable_" r_prefix = "rtable_" print("\n- List of columns: ") print(list(A.columns)) # Labeling output table column selection print( "\n- Enter the indexes of columns that you want to see in labeling table (0-" + str(len(A.columns) - 1) + "):") out_attr = [] for i in range(1, len(A.columns)): print("- Finish with empty character(enter+enter) " + str(i)) add_to_attr = input() if (add_to_attr == ''): break # Get indexes from user and add columns into out_attr list out_attr.append(A.columns[int(add_to_attr)]) # Print output attributes print(out_attr) # Loop for adding/combining new blockers while (True): # Blocker selection print( "\n- Do yo want to use Attribute Equivalence[ab] (same), Overlap[ob] (similar) or Blackbox[bb] blocker:" ) blocker_selection = input() # ----- Attribute Equivalence Blocker ----- if (blocker_selection == 'ab'): # Create attribute equivalence blocker ab = em.AttrEquivalenceBlocker() # Counter for indexes attr_eq_counter = 0 # Check if Overlap Blocker used before if (C_overlap and not C_overlap[-1].empty): print( "\n- Do you want to work on Overlap Blocker candidate set or not (y or n):" ) use_cand_set = input() if (use_cand_set == 'y'): C_attr_eq.append( C_overlap[-1]) # Add last output of ob attr_eq_counter += 1 # For skipping block_table function in first time # Check if BlackBox Blocker used before if (C_blackbox and not C_blackbox[-1].empty): print( "\n- Do you want to work on BlackBox Blocker candidate set or not (y or n):" ) use_cand_set = input() if (use_cand_set == 'y'): C_attr_eq.append( C_blackbox[-1]) # Add last output of ob attr_eq_counter += 1 # For skipping block_table function in first time # Loop for adding more columns/attributes into Attr Equ blocker while (True): # List column names print("\n- List of columns: ") print(list(A.columns)) # Get blocking attribute/column print( "\n- Which column (w/ index) to use for equivalence blocking? (ex. 1):" ) blocking_col_index = input() blocking_col = A.columns[int(blocking_col_index)] print( "\n- Do you want to add missing values into blocking? (y or n):" ) add_missing_val = input() if (add_missing_val == 'y'): add_missing_val = True else: add_missing_val = False # First time using Attr Equ blocker, use A and B if (attr_eq_counter == 0): # Block using selected (blocking_col) attribute on A and B C_attr_eq.append( ab.block_tables(A, B, blocking_col, blocking_col, l_output_attrs=out_attr, r_output_attrs=out_attr, l_output_prefix=l_prefix, r_output_prefix=r_prefix, allow_missing=add_missing_val, n_jobs=-1)) # Not first time, add new constraint into previous candidate set else: # Block using selected (blocking_col) attribute on previous (last=-1) candidate set C_attr_eq.append( ab.block_candset(C_attr_eq[-1], l_block_attr=blocking_col, r_block_attr=blocking_col, allow_missing=add_missing_val, n_jobs=-1, show_progress=False)) # DEBUG BLOCKING print( "\n- Attribute Equivalence Blocker Debugging...\n") # Debug last blocker output dbg = em.debug_blocker(C_attr_eq[-1], A, B, output_size=200, n_jobs=-1) # Display first few tuple pairs from the debug_blocker's output print("\n- Blocking debug results:") print(dbg.head()) attr_eq_counter += 1 # Increase the counter # Continue to use Attribute Equivalence Blocker or not print("\n- Length of candidate set: " + str(len(C_attr_eq[-1]))) print( "- Add another column into Attribute Equivalence Blocker[a] OR Reset last blocker's output[r]:" ) ab_next_operation = input() if (not ab_next_operation.islower()): ab_next_operation = ab_next_operation.lower( ) # Lower case # Continue using Attribute Equivalence Blocker if (ab_next_operation == 'a'): continue # Reset/remove last blocker's output from candidate set list elif (ab_next_operation == 'r'): del C_attr_eq[-1] print("\n- Last blocker output removed!") print( "- Continue to use Attribute Equivalence Blocker (y or n):" ) ab_next_operation = input() if (ab_next_operation == 'n'): break # Finish Attribute Equivalence Blocker else: break # ----- Overlap Blocker ----- elif (blocker_selection == 'ob'): # Create attribute equivalence blocker ob = em.OverlapBlocker() # Counter for indexes overlap_counter = 0 # Check if Attribute Equivalence Blocker used before if (C_attr_eq and not C_attr_eq[-1].empty): print( "\n- Do you want to work on Attribute Equivalence Blocker candidate set or not (y or n):" ) use_cand_set = input() if (use_cand_set == 'y'): C_overlap.append( C_attr_eq[-1]) # Add last output of ab overlap_counter += 1 # For skipping block_table function in first time # Check if BlackBox Blocker used before if (C_blackbox and not C_blackbox[-1].empty): print( "\n- Do you want to work on BlackBox Blocker candidate set or not (y or n):" ) use_cand_set = input() if (use_cand_set == 'y'): C_overlap.append( C_blackbox[-1]) # Add last output of ob overlap_counter += 1 # For skipping block_table function in first time # Loop for adding more columns/attributes into Overlap blocker while (True): # List column names print("- List of columns: ") print(list(A.columns)) # Get blocking attribute/column print( "- Which column (w/ index) to use for overlap blocking? (ex. 1):" ) blocking_col_index = input() blocking_col = A.columns[int(blocking_col_index)] print( "\n- Do you want to add missing values into blocking? (y or n):" ) add_missing_val = input() if (add_missing_val == 'y'): add_missing_val = True else: add_missing_val = False print("\n- Use words as a token? (y or n):") use_world_level = input() if (use_world_level == 'y'): use_world_level = True q_gram_value = None else: use_world_level = False print( "\n- Q-gram q value (ex. 2 --> JO HN SM IT H):" ) q_gram_value = input() q_gram_value = int(q_gram_value) print( "\n- Enter the overlap size (# of tokens that overlap):" ) overlap_size = input() overlap_size = int(overlap_size) print( "\n- Do you want to remove (a, an, the) from token set? (y or n):" ) use_stop_words = input() if (use_stop_words == 'y'): use_stop_words = True else: use_stop_words = False # First time using Overlap blocker, use A and B if (overlap_counter == 0): # Block using selected (blocking_col) attribute on A and B C_overlap.append( ob.block_tables(A, B, blocking_col, blocking_col, l_output_attrs=out_attr, r_output_attrs=out_attr, l_output_prefix=l_prefix, r_output_prefix=r_prefix, rem_stop_words=use_stop_words, q_val=q_gram_value, word_level=use_world_level, overlap_size=overlap_size, allow_missing=add_missing_val, n_jobs=-1)) # Not first time, add new constraint into previous candidate set else: # Block using selected (blocking_col) attribute on previous (last=-1) candidate set C_overlap.append( ob.block_candset(C_overlap[-1], l_overlap_attr=blocking_col, r_overlap_attr=blocking_col, rem_stop_words=use_stop_words, q_val=q_gram_value, word_level=use_world_level, overlap_size=overlap_size, allow_missing=add_missing_val, n_jobs=-1, show_progress=False)) # DEBUG BLOCKING print("\n- Overlap Blocker Debugging...\n") # Debug last blocker output dbg = em.debug_blocker(C_overlap[-1], A, B, output_size=200, n_jobs=-1) # Display first few tuple pairs from the debug_blocker's output print("\n- Blocking debug results:") print(dbg.head()) overlap_counter += 1 # Increase the counter # Continue to use Attribute Equivalence Blocker or not print("\n- Length of candidate set: " + str(len(C_overlap[-1]))) print( "- Add another column into Overlap Blocker[a] OR Reset last blocker's output[r]:" ) ob_next_operation = input() if (not ob_next_operation.islower()): ob_next_operation = ob_next_operation.lower( ) # Lower case # Continue using Overlap Blocker if (ob_next_operation == 'a'): continue # Reset/remove last blocker's output from candidate set list elif (ob_next_operation == 'r'): del C_overlap[-1] print("\n- Last blocker output removed!") print( "- Continue to use Overlap Blocker (y or n):") ob_next_operation = input() if (ob_next_operation == 'n'): break # Finish Overlap Blocker else: break # ----- BlackBox Blocker ----- elif (blocker_selection == 'bb'): # Create attribute equivalence blocker bb = em.BlackBoxBlocker() # Counter for indexes blackbox_counter = 0 # Check if Overlap Blocker used before if (C_attr_eq and not C_attr_eq[-1].empty): print( "\n- Do you want to work on Attribute Equivalence Blocker candidate set or not (y or n):" ) use_cand_set = input() if (use_cand_set == 'y'): C_blackbox.append( C_attr_eq[-1]) # Add last output of ob blackbox_counter += 1 # For skipping block_table function in first time # Check if Overlap Blocker used before if (C_overlap and not C_overlap[-1].empty): print( "\n- Do you want to work on Overlap Blocker candidate set or not (y or n):" ) use_cand_set = input() if (use_cand_set == 'y'): C_blackbox.append( C_overlap[-1]) # Add last output of ob blackbox_counter += 1 # For skipping block_table function in first time # Loop for adding more columns/attributes into BlackBox blocker while (True): # Set function bb.set_black_box_function( number_10_percent_comparision) # First time using Overlap blocker, use A and B if (overlap_counter == 0): # Block on A and B C_blackbox.append( bb.block_tables(A, B, l_output_attrs=out_attr, r_output_attrs=out_attr, l_output_prefix=l_prefix, r_output_prefix=r_prefix, n_jobs=-1, show_progress=False)) # Not first time, add new constraint into previous candidate set else: # Block on previous (last=-1) candidate set C_blackbox.append( bb.block_candset(C_blackbox[-1], n_jobs=-1, show_progress=False)) # DEBUG BLOCKING print("\n- BlackBox Blocker Debugging...\n") # Debug last blocker output dbg = em.debug_blocker(C_blackbox[-1], A, B, output_size=200, n_jobs=-1) # Display first few tuple pairs from the debug_blocker's output print("\n- Blocking debug results:") print(dbg.head()) blackbox_counter += 1 # Increase the counter # Continue to use Attribute Equivalence Blocker or not print("\n- Length of candidate set: " + str(len(C_blackbox[-1]))) print( "- Add another column into BlackBox Blocker[a] OR Reset last blocker's output[r]:" ) bb_next_operation = input() if (not bb_next_operation.islower()): bb_next_operation = bb_next_operation.lower( ) # Lower case # Continue using Overlap Blocker if (bb_next_operation == 'a'): continue # Reset/remove last blocker's output from candidate set list elif (bb_next_operation == 'r'): del C_blackbox[-1] print("\n- Last blocker output removed!") print( "- Continue to use BlackBox Blocker (y or n):") bb_next_operation = input() if (bb_next_operation == 'n'): break # Finish BlackBox Blocker else: break print("\n- Do you want to add/use another blocker? (y or n):") blocker_decision = input() if (blocker_decision == 'n'): break print( "\n- Which blocker output you want to use? (Attr Equ-ab, Overlap-ob, BlackBox-bb, Union-un)" ) blocker_output_selection = input() # Attribute Equ if (blocker_output_selection == "ab"): C = C_attr_eq[-1] # Overlap elif (blocker_output_selection == "ob"): C = C_overlap[-1] # Overlap elif (blocker_output_selection == "bb"): C = C_blackbox[-1] # Union of blockers elif (blocker_output_selection == "un"): # Combine/union blockers candidate sets print("\n- TODO: Unions Attr Equ and Overlap only!") if (C_attr_eq and C_overlap and not C_attr_eq[-1].empty and not C_overlap[-1].empty): # Both blocker types used C = em.combine_blocker_outputs_via_union( [C_attr_eq[-1], C_overlap[-1]]) print( "\n- Blockers candidate set outputs combined via union." ) else: # Error C = [] print( "\n- ERROR: Candidate set C is empty! Check blockers' results." ) # Error else: C = [] print( "\n- ERROR: Candidate set C is empty! Check blockers' results." ) print("\n- Length of C: " + str(len(C))) else: print( "\n- 2 Tables column names are different, they must be the same" ) print(list(A.columns)) print(list(B.columns)) # SAMPLING&LABELING print("\n-------------SAMPLING&LABELING-------------\n") print("- Choose sampling size (eg. 450):") sampling_size = input() while (int(sampling_size) > len(C)): print("- Sampling size cannot be bigger than " + str(len(C))) sampling_size = input() # Sample candidate set S = em.sample_table(C, int(sampling_size)) print("- New window will pop-up for " + sampling_size + " sized table.") print("- If there is a match, change tuple's label value to 1") # Label S G = em.label_table(S, 'label') #DEVELOPMENT AND EVALUATION print("\n-------------DEVELOPMENT AND EVALUATION-------------\n") # Split S into development set (I) and evaluation set (J) IJ = em.split_train_test(G, train_proportion=0.7, random_state=0) I = IJ['train'] J = IJ['test'] #SELECTING THE BEST MATCHER print("\n-------------SELECTING THE BEST MATCHER-------------\n") # Create a set of ML-matchers dt = em.DTMatcher(name='DecisionTree', random_state=0) svm = em.SVMMatcher(name='SVM', random_state=0) rf = em.RFMatcher(name='RF', random_state=0) lg = em.LogRegMatcher(name='LogReg', random_state=0) ln = em.LinRegMatcher(name='LinReg') nb = em.NBMatcher(name='NaiveBayes') print( "\n- 6 different ML-matchers created: DL, SVM, RF, LogReg, LinReg, NB") print("\n- Creating features...") # Generate features feature_table = em.get_features_for_matching( A, B, validate_inferred_attr_types=False) print("\n- Features list:") # List the names of the features generated print(feature_table['feature_name']) print("\n- Converting the development set to feature vectors...") # Convert the I into a set of feature vectors using feature_table H = em.extract_feature_vecs(I, feature_table=feature_table, attrs_after='label', show_progress=False) print("\n- Feature table first rows:") # Display first few rows print(H.head()) # Primary key of tables = prefix + pk = l_id, r_id ltable_pk = l_prefix + pk_A rtable_pk = r_prefix + pk_B # Check if the feature vectors contain missing values # A return value of True means that there are missing values is_missing_values = any(pd.notnull(H)) print("\n- Does feature vector have missing values: " + str(is_missing_values)) if (is_missing_values): # Impute feature vectors with the mean of the column values. H = em.impute_table( H, exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'], strategy='mean', val_all_nans=0.0) #print("\n- Feature table first rows:") # Display first few rows #print(H.head()) print("- Impute table function used for missing values.") print("\n- Selecting the best matcher using cross-validation...") # Select the best ML matcher using CV result = em.select_matcher( matchers=[dt, rf, svm, ln, lg, nb], table=H, exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'], k=5, target_attr='label', metric_to_select_matcher='f1', random_state=0) print("\n- Results:") print(result['cv_stats']) #DEBUGGING THE MATCHER print("\n-------------DEBUGGING THE MATCHER-------------\n") # Split feature vectors into train and test UV = em.split_train_test(H, train_proportion=0.5) U = UV['train'] V = UV['test'] # Debug decision tree using GUI em.vis_debug_rf(rf, U, V, exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'], target_attr='label') print("\n- Do you want to add another feature?") H = em.extract_feature_vecs(I, feature_table=feature_table, attrs_after='label', show_progress=False) # Check if the feature vectors contain missing values # A return value of True means that there are missing values is_missing_values = any(pd.notnull(H)) print("\n- Does feature vector have missing values: " + str(is_missing_values)) if (is_missing_values): # Impute feature vectors with the mean of the column values. H = em.impute_table( H, exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'], strategy='mean') print("\n- Feature table first rows:") # Display first few rows print(H.head()) # Select the best ML matcher using CV result = em.select_matcher( [dt, rf, svm, ln, lg, nb], table=H, exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'], k=5, target_attr='label', metric_to_select_matcher='f1', random_state=0) print("\n- Results:") print(result['cv_stats']) #EVALUATING THE MATCHING OUTPUT print("\n-------------EVALUATING THE MATCHING OUTPUT-------------\n") print("\n- Converting the evaluation set to feature vectors...") # Convert J into a set of feature vectors using feature table L = em.extract_feature_vecs(J, feature_table=feature_table, attrs_after='label', show_progress=False) # Check if the feature vectors contain missing values # A return value of True means that there are missing values is_missing_values = any(pd.notnull(L)) print("\n- Does feature vector have missing values: " + str(is_missing_values)) if (is_missing_values): # Impute feature vectors with the mean of the column values. L = em.impute_table( L, exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'], strategy='mean') print("\n- Feature table first rows:") # Display first few rows print(L.head()) print("\n- Training the selected matcher...") # Train using feature vectors from I rf.fit(table=H, exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'], target_attr='label') print("\n- Predicting the matches...") # Predict on L predictions = rf.predict( table=L, exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'], append=True, target_attr='predicted', inplace=False) print("\n- Evaluating the prediction...") # Evaluate the predictions eval_result = em.eval_matches(predictions, 'label', 'predicted') print(em.print_eval_summary(eval_result)) print("\n- Time elapsed:") print(datetime.now() - startTime) print("\n-------------END-------------\n")
C = ob.block_candset(C, 'Author', 'Author') end = datetime.datetime.now() print((end - start).total_seconds()) em.to_csv_metadata(C, 'block.csv') C # In[10]: #Sampling S = em.sample_table(C, 350) S # In[11]: #Labeling (In this project, we label the saved csv fie in Excel) G = em.label_table(S, label_column_name='gold_labels') # In[12]: #save sampled Data to a file em.to_csv_metadata(G, './noLabel.csv') # In[13]: # read the labeled data G = em.read_csv_metadata('../Data/Label.csv', key='_id', ltable=A, rtable=B, fk_ltable='ltable_ID', fk_rtable='rtable_ID')