-1., 0., ]) params = py_indoor_context.ManhattanHyperParameters(w, 4., 6.) w2 = np.array([ 2., -.5, .1, ]) params2 = py_indoor_context.ManhattanHyperParameters(w2, 3., 7.) train_ids = [20, 40, 60] test_ids = [65, 70] mgr = py_indoor_context.TrainingManager() mgr.LoadSequence("lab_kitchen1", train_ids + test_ids) fm = py_indoor_context.FeatureManager('/tmp') for i in range(mgr.NumInstances()): fm.ComputeMockFeatures(mgr.GetInstance(i)) fm.CommitFeatures() train_instances = [mgr.GetInstance(i) for i in range(len(train_ids))] test_instances = [ mgr.GetInstance(i) for i in range(len(train_ids), len(train_ids) + len(test_ids)) ] r = training_helpers.Reporter(train_instances, test_instances, fm,
import py_indoor_context as ic mgr = ic.TrainingManager() mgr.LoadSequence('lab_ground1', [32])