コード例 #1
0
def test_redis_look_ahead_error():
    """Test whether the look-ahead mode fails as expected."""
    model, prior, distance, obs = basic_testcase()
    with tempfile.NamedTemporaryFile(mode='w', suffix='.csv') as fh:
        sampler = RedisEvalParallelSamplerServerStarter(
            look_ahead=True,
            look_ahead_delay_evaluation=False,
            log_file=fh.name)
        args_list = [{
            'eps': pyabc.MedianEpsilon()
        }, {
            'distance_function': pyabc.AdaptivePNormDistance()
        }]
        for args in args_list:
            if 'distance_function' not in args:
                args['distance_function'] = distance
            try:
                with pytest.raises(AssertionError) as e:
                    abc = pyabc.ABCSMC(model,
                                       prior,
                                       sampler=sampler,
                                       population_size=10,
                                       **args)
                    abc.new(pyabc.create_sqlite_db_id(), obs)
                    abc.run(max_nr_populations=3)
                assert "cannot be used in look-ahead mode" in str(e.value)
            finally:
                sampler.shutdown()
コード例 #2
0
def test_early_stopping():
    """Basic test whether an early stopping pipeline works.
    Heavily inspired by the `early_stopping` notebook.
    """
    prior = pyabc.Distribution(step_size=pyabc.RV("uniform", 0, 10))

    n_steps = 30
    gt_step_size = 5
    gt_trajectory = simulate(n_steps, gt_step_size)

    model = MyStochasticProcess(n_steps=n_steps,
                                gt_step_size=gt_step_size,
                                gt_trajectory=gt_trajectory)

    abc = pyabc.ABCSMC(
        models=model,
        parameter_priors=prior,
        distance_function=pyabc.NoDistance(),
        population_size=30,
        transitions=pyabc.LocalTransition(k_fraction=0.2),
        eps=pyabc.MedianEpsilon(300, median_multiplier=0.7),
    )
    # initializing eps manually is necessary as we only have an integrated
    #  model
    # TODO automatically iniitalizing would be possible, e.g. using eps = inf

    abc.new(pyabc.create_sqlite_db_id())
    abc.run(max_nr_populations=3)
コード例 #3
0
 def __init__(self,
              get_acceptor=None,
              get_transition=None,
              get_eps=None,
              n_acc: int = 1000,
              n_pop: int = 20,
              eps_min: float = 0.0,
              min_acc_rate: float = 0.0,
              id_=None):
     if get_acceptor is None:
         get_acceptor = lambda: pyabc.UniformAcceptor()
     self.get_acceptor = get_acceptor
     if get_transition is None:
         get_transition = lambda: pyabc.MultivariateNormalTransition()
     self.get_transition = get_transition
     if get_eps is None:
         get_eps = lambda: pyabc.MedianEpsilon()
     self.get_eps = get_eps
     self.n_acc = n_acc
     self.n_pop = n_pop
     self.eps_min = eps_min
     self.min_acc_rate = min_acc_rate
     self.id = id_
コード例 #4
0
ファイル: abcsmc3.py プロジェクト: chaolinhan/MSc_Project
    a=pyabc.RV(prior_distribution, lim.lb, lim.interval_length),
    k_n_beta=pyabc.RV(prior_distribution, lim.lb, lim.interval_length),
    mu_n=pyabc.RV(prior_distribution, lim.lb, lim.interval_length),
    v_n_phi=pyabc.RV(prior_distribution, lim.lb, lim.interval_length),
    k_phi_beta=pyabc.RV(prior_distribution, lim.lb, lim.interval_length),
    mu_phi=pyabc.RV(prior_distribution, lim.lb, lim.interval_length),
    s_beta_n=pyabc.RV(prior_distribution, lim.lb, lim.interval_length),
    mu_beta=pyabc.RV(prior_distribution, lim.lb, lim.interval_length),
    s_alpha_phi=pyabc.RV(prior_distribution, lim.lb, lim.interval_length),
    mu_alpha=pyabc.RV(prior_distribution, lim.lb, lim.interval_length))

# %% Define ABC-SMC model

distanceP2 = pyabc.PNormDistance(p=2)  # , factors=factors)

eps0 = pyabc.MedianEpsilon(60)
# eps_fixed = pyabc.epsilon.ListEpsilon([50, 46, 43, 40, 37, 34, 31, 29, 27, 25,
#                                        23, 21, 19, 17, 15, 14, 13, 12, 11, 10])

# transition0 = pyabc.transition.LocalTransition(k=50, k_fraction=None)

# sampler0 = pyabc.sampler.MulticoreEvalParallelSampler(n_procs=48)

# set model and prior
abc = pyabc.ABCSMC(
    models=solver.ode_model3,
    parameter_priors=para_prior3,
    population_size=2000,
    # sampler=sampler0,
    distance_function=distanceP2,
    eps=eps0,
コード例 #5
0
# %% Define ABC-SMC model

# distanceP2_adpt = pyabc.AdaptivePNormDistance(p=2,
#                                               scale_function=pyabc.distance.root_mean_square_deviation
#                                             #   factors=factors
#                                               )
distanceP2 = pyabc.PNormDistance(p=2)#, factors=factors)
# kernel1 = pyabc.IndependentNormalKernel(var=1.0 ** 2)

# Measure distance and set it as minimum epsilon
# min_eps = distanceP2(obs_data_noisy, obs_data_raw)

# acceptor1 = pyabc.StochasticAcceptor()
# acceptor_adpt = pyabc.UniformAcceptor(use_complete_history=True)

eps0 = pyabc.MedianEpsilon(50)
# eps1 = pyabc.Temperature()
# eps_fixed = pyabc.epsilon.ListEpsilon([50, 46, 43, 40, 37, 34, 31, 29, 27, 25,
#                                        23, 21, 19, 17, 15, 14, 13, 12, 11, 10])

# transition0 = pyabc.transition.LocalTransition(k=50, k_fraction=None)
# transition1 = pyabc.transition.GridSearchCV()

# sampler0 = pyabc.sampler.MulticoreEvalParallelSampler(n_procs=1)

abc = pyabc.ABCSMC(models=solver.ode_model1,
                   parameter_priors=para_prior1,
                   # acceptor=acceptor_adpt,
                   population_size=2000,
                   # sampler=sampler0,
                   distance_function=distanceP2,
コード例 #6
0
    a=pyabc.RV(prior_distribution, lim.lb, lim.interval_length),
    k_n_beta=pyabc.RV(prior_distribution, lim.lb, lim.interval_length),
    mu_n=pyabc.RV(prior_distribution, lim.lb, lim.interval_length),
    v_n_phi=pyabc.RV(prior_distribution, lim.lb, lim.interval_length),
    k_phi_beta=pyabc.RV(prior_distribution, lim.lb, lim.interval_length),
    mu_phi=pyabc.RV(prior_distribution, lim.lb, lim.interval_length),
    s_beta_n=pyabc.RV(prior_distribution, lim.lb, lim.interval_length),
    mu_beta=pyabc.RV(prior_distribution, lim.lb, lim.interval_length),
    s_alpha_phi=pyabc.RV(prior_distribution, lim.lb, lim.interval_length),
    mu_alpha=pyabc.RV(prior_distribution, lim.lb, lim.interval_length))

# %% Define ABC-SMC model

distanceP2 = pyabc.PNormDistance(p=2)  # , factors=factors)

eps0 = pyabc.MedianEpsilon(100)
# eps_fixed = pyabc.epsilon.ListEpsilon([50, 46, 43, 40, 37, 34, 31, 29, 27, 25,
#                                        23, 21, 19, 17, 15, 14, 13, 12, 11, 10])

# transition0 = pyabc.transition.LocalTransition(k=50, k_fraction=None)

# sampler0 = pyabc.sampler.MulticoreEvalParallelSampler(n_procs=48)

abc = pyabc.ABCSMC(
    models=solver.ode_model2,
    parameter_priors=para_prior2,
    population_size=2000,
    # sampler=sampler0,
    distance_function=distanceP2,
    eps=eps0,
)
コード例 #7
0
def two_competing_gaussians_multiple_population(db_path, sampler, n_sim):
    # Define a gaussian model
    sigma = .5

    def model(args):
        return {"y": st.norm(args['x'], sigma).rvs()}

    # We define two models, but they are identical so far
    models = [model, model]
    models = list(map(pyabc.SimpleModel, models))

    # However, our models' priors are not the same. Their mean differs.
    mu_x_1, mu_x_2 = 0, 1
    parameter_given_model_prior_distribution = [
        pyabc.Distribution(x=pyabc.RV("norm", mu_x_1, sigma)),
        pyabc.Distribution(x=pyabc.RV("norm", mu_x_2, sigma)),
    ]

    # We plug all the ABC setups together
    nr_populations = 2
    pop_size = pyabc.ConstantPopulationSize(23, nr_samples_per_parameter=n_sim)
    abc = pyabc.ABCSMC(models,
                       parameter_given_model_prior_distribution,
                       pyabc.PercentileDistance(measures_to_use=["y"]),
                       pop_size,
                       eps=pyabc.MedianEpsilon(),
                       sampler=sampler)

    # Finally we add meta data such as model names and
    # define where to store the results
    # y_observed is the important piece here: our actual observation.
    y_observed = 1
    abc.new(db_path, {"y": y_observed})

    # We run the ABC with 3 populations max
    minimum_epsilon = .05
    history = abc.run(minimum_epsilon, max_nr_populations=nr_populations)

    # Evaluate the model probabilities
    mp = history.get_model_probabilities(history.max_t)

    def p_y_given_model(mu_x_model):
        res = st.norm(mu_x_model, np.sqrt(sigma**2 + sigma**2)).pdf(y_observed)
        return res

    p1_expected_unnormalized = p_y_given_model(mu_x_1)
    p2_expected_unnormalized = p_y_given_model(mu_x_2)
    p1_expected = p1_expected_unnormalized / (p1_expected_unnormalized +
                                              p2_expected_unnormalized)
    p2_expected = p2_expected_unnormalized / (p1_expected_unnormalized +
                                              p2_expected_unnormalized)
    assert history.max_t == nr_populations - 1
    # the next line only tests if we obtain correct numerical types
    try:
        mp0 = mp.p[0]
    except KeyError:
        mp0 = 0

    try:
        mp1 = mp.p[1]
    except KeyError:
        mp1 = 0

    assert abs(mp0 - p1_expected) + abs(mp1 - p2_expected) < np.inf

    # check that sampler only did nr_particles samples in first round
    pops = history.get_all_populations()
    # since we had calibration (of epsilon), check that was saved
    pre_evals = pops[pops['t'] == pyabc.History.PRE_TIME]['samples'].values
    assert pre_evals >= pop_size.nr_particles
    # our samplers should not have overhead in calibration, except batching
    batch_size = sampler.batch_size if hasattr(sampler, 'batch_size') else 1
    max_expected = pop_size.nr_particles + batch_size - 1
    if pre_evals > max_expected:
        # Violations have been observed occasionally for the redis server
        # due to runtime conditions with the increase of the evaluations
        # counter. This could be overcome, but as it usually only happens
        # for low-runtime models, this should not be a problem. Thus, only
        # print a warning here.
        logger.warning(
            f"Had {pre_evals} simulations in the calibration iteration, "
            f"but a maximum of {max_expected} would have been sufficient for "
            f"the population size of {pop_size.nr_particles}.")
コード例 #8
0
def test_medianepsilon():
    # functionality already covered by quantile epsilon tests
    eps = pyabc.MedianEpsilon()
    assert np.isclose(eps.alpha, 0.5)