コード例 #1
0
def evaluate_primal(
    firedrake_function: Callable[..., BackendVariable],
    firedrake_templates: Collection[BackendVariable],
    *args: np.array,
) -> Tuple[np.array, BackendVariable, Collection[BackendVariable], pyadjoint.Tape]:
    """Computes the output of a firedrake_function and saves a corresponding pyadjoint tape
    Input:
        firedrake_function (callable): Firedrake function to be executed during the forward pass
        firedrake_templates (collection of BackendVariable): Templates for converting arrays to Firedrake types
        args (tuple): NumPy array representation of the input to firedrake_function
    Output:
        numpy_output (np.array): NumPy array representation of the output from firedrake_function(*firedrake_inputs)
        firedrake_output (AdjFloat or Function): Firedrake representation of the output from firedrake_function(*firedrake_inputs)
        firedrake_inputs (collection of BackendVariable): Firedrake representation of the input args
        tape (pyadjoint.Tape): pyadjoint's saved computational graph
    """

    check_input(firedrake_templates, *args)
    firedrake_inputs = convert_all_to_backend(firedrake_templates, *args)

    # Create tape associated with this forward pass
    tape = pyadjoint.Tape()
    pyadjoint.set_working_tape(tape)
    firedrake_output = firedrake_function(*firedrake_inputs)

    if isinstance(firedrake_output, tuple):
        raise ValueError("Only single output from Firedrake function is supported.")

    numpy_output = np.asarray(to_numpy(firedrake_output))
    return numpy_output, firedrake_output, firedrake_inputs, tape
コード例 #2
0
def evaluate_primal(
    fenics_function: Callable,
    fenics_templates: Iterable[FenicsVariable],
    *args: np.array,
) -> Tuple[np.array, FenicsVariable, Tuple[FenicsVariable], pyadjoint.Tape]:
    """Computes the output of a fenics_function and saves a corresponding gradient tape
    Input:
        fenics_function (callable): FEniCS function to be executed during the forward pass
        fenics_templates (iterable of FenicsVariable): Templates for converting arrays to FEniCS types
        args (tuple): NumPy array representation of the input to fenics_function
    Output:
        numpy_output (np.array): NumPy array representation of the output from fenics_function(*fenics_inputs)
        fenics_output (AdjFloat or Function): FEniCS representation of the output from fenics_function(*fenics_inputs)
        fenics_inputs (list of FenicsVariable): FEniCS representation of the input args
        tape (pyadjoint.Tape): pyadjoint's saved computational graph
    """

    check_input(fenics_templates, *args)
    fenics_inputs = convert_all_to_fenics(fenics_templates, *args)

    # Create tape associated with this forward pass
    tape = pyadjoint.Tape()
    pyadjoint.set_working_tape(tape)
    fenics_output = fenics_function(*fenics_inputs)

    if isinstance(fenics_output, tuple):
        raise ValueError(
            "Only single output from FEniCS function is supported.")

    numpy_output = np.asarray(fenics_to_numpy(fenics_output))
    return numpy_output, fenics_output, fenics_inputs, tape
コード例 #3
0
def fem_eval(
    fenics_function: Callable,
    fenics_templates: Iterable[FenicsVariable],
    *args: np.array,
) -> Tuple[np.array, FenicsVariable, Tuple[FenicsVariable], pyadjoint.Tape]:
    """Computes the output of a fenics_function and saves a corresponding gradient tape
    Input:
        fenics_function (callable): FEniCS function to be executed during the forward pass
        fenics_templates (iterable of FenicsVariable): Templates for converting arrays to FEniCS types
        args (tuple): jax array representation of the input to fenics_function
    Output:
        numpy_output (np.array): JAX array representation of the output from fenics_function(*fenics_inputs)
        residual_form (ufl.Form): UFL Form for the residual used to solve the problem with fenics.solve(F==0, ...)
        fenics_inputs (list of FenicsVariable): FEniCS representation of the input args
    """

    check_input(fenics_templates, *args)
    fenics_inputs = convert_all_to_fenics(fenics_templates, *args)

    # Create tape associated with this forward pass
    tape = pyadjoint.Tape()
    pyadjoint.set_working_tape(tape)
    fenics_output = fenics_function(*fenics_inputs)

    if isinstance(fenics_output, tuple):
        raise ValueError(
            "Only single output from FEniCS function is supported.")

    numpy_output = np.asarray(fenics_to_numpy(fenics_output))
    return numpy_output, fenics_output, fenics_inputs, tape
コード例 #4
0
def pytest_runtest_setup(item):
    """ Hook function which is called before every test """
    set_working_tape(Tape())

    # Fix the seed to avoid random test failures due to slight tolerance variations
    numpy.random.seed(21)
コード例 #5
0
from .assembly import assemble, assemble_system
from .solving import solve
from .projection import project
from .interpolation import interpolate
from .ufl_constraints import UFLEqualityConstraint, UFLInequalityConstraint
from .shapead_transformations import (transfer_from_boundary,
                                      transfer_to_boundary)
if backend.__name__ != "firedrake":
    from .newton_solver import NewtonSolver
    from .lu_solver import LUSolver
    from .krylov_solver import KrylovSolver
    from .petsc_krylov_solver import PETScKrylovSolver
    from .types import *
    from .refine import refine
    from .system_assembly import *

from .variational_solver import (NonlinearVariationalProblem,
                                 NonlinearVariationalSolver,
                                 LinearVariationalProblem,
                                 LinearVariationalSolver)
from pyadjoint import (Tape, set_working_tape, get_working_tape,
                       pause_annotation, continue_annotation,
                       ReducedFunctional, taylor_test, taylor_to_dict,
                       compute_gradient, compute_hessian, AdjFloat, Control,
                       minimize, maximize, MinimizationProblem, IPOPTSolver,
                       ROLSolver, InequalityConstraint, EqualityConstraint,
                       MoolaOptimizationProblem, print_optimization_methods,
                       stop_annotating)

set_working_tape(Tape())