コード例 #1
0
ファイル: preprocessing.py プロジェクト: reviasprila/pyadlml
 def transform(self, df_devices=None):
     """
     Discretize the data.
     Parameters
     ----------
     X : array-like of shape (n_samples, n_features)
         Data to be discretized.
     Returns
     -------
     Xt : {ndarray, sparse matrix}, dtype={np.float32, np.float64}
         Data in the binned space. Will be a sparse matrix if
         `self.encode='onehot'` and ndarray otherwise.
     """
     if self.encode == 'raw':
         return create_raw(
             df_devices,
             t_res=self.t_res,
             sample_strat=self.sample_strat
         )
     elif self.encode == 'changepoint':
         return create_changepoint(
             df_devices,
             t_res=self.t_res
         )
     elif self.encode == 'lastfired':
         return create_lastfired(
             df_devices,
             t_res=self.t_res
         )
コード例 #2
0
ファイル: preprocessing.py プロジェクト: reviasprila/pyadlml
 def fit(self, df_devices, y=None):
     """
     Fit the estimator.
     Parameters
     ----------
     X : array-like of shape (n_samples, n_features)
         Data to be discretized.
     y : None
         Ignored. This parameter exists only for compatibility with
         :class:`~sklearn.pipeline.Pipeline`.
     Returns
     -------
     self
     """
     if self.encode == ENC_RAW:
         self.data = create_raw(
             df_devices,
             t_res=self.t_res,
             sample_strat=self.sample_strat
         )
     elif self.encode == ENC_CP:
         self.data = create_changepoint(
             df_devices,
             t_res=self.t_res
         )
     elif self.encode == ENC_LF:
         self.data = create_lastfired(
             df_devices,
             t_res=self.t_res
         )
     else:
         raise ValueError
     return self
コード例 #3
0
ファイル: preprocessing.py プロジェクト: tcsvn/pyadlml
    def transform(self, df_devs=None, y=None):
        """
        Discretize the data.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Data to be discretized.

        Returns
        -------
        Xt : {ndarray, sparse matrix}, dtype={np.float32, np.float64}
            Data in the binned space. Will be a sparse matrix if
            `self.encode='onehot'` and ndarray otherwise.
        """
        PRAEFIX_LF = 'lf_'
        PRAEFIX_CP = 'cp_'

        df_lst = []
        iters = self.encode.split('+')
        for enc in iters:
            if enc == ENC_RAW:
                data = create_raw(df_devs)
                if self.t_res is not None:
                    data = resample_raw(
                        data,
                        df_dev=df_devs,
                        t_res=self.t_res,
                        most_likely_values=self.dev_most_likely_values_)

            elif enc == ENC_CP:
                data = create_changepoint(df_devs)
                if self.t_res is not None:
                    data = resample_changepoint(data, self.t_res)

                # add prefix to make column names unique
                if len(iters) > 1:
                    data.columns = [TIME] + list(
                        map(PRAEFIX_CP.__add__, data.columns[1:]))

            elif enc == ENC_LF:
                data = create_lastfired(df_devs)
                if self.t_res is not None:
                    data = resample_last_fired(data, self.t_res)

                # add prefix to make column names unique
                if len(iters) > 1:
                    data.columns = [TIME] + list(
                        map(PRAEFIX_LF.__add__, data.columns[1:]))

            else:
                raise ValueError
            data = data.set_index(TIME)
            df_lst.append(data)

        data = pd.concat(df_lst, axis=1).reset_index()
        return data
コード例 #4
0
ファイル: image.py プロジェクト: tcsvn/pyadlml
def create_lagged_changepoint(df_dev, window_size=10, t_res=None):
    """ create a 3D tensor of sliding windows over the raw representation.
    Parameters
    ----------
        df_dev: pd.DataFrame
        df_act: pd.DataFrame
        window_size: int
            how much raw vectors should be considered for the creation of the 2d image
        t_res: String
            how much  time intervals TODO ....
            
    Returns
    -------
        res: np.array 3D (K-window_size x window_size x devices)
        res_label: np.array 1D (K-window_size)
    """
    cp = create_changepoint(df_dev, t_res=t_res).values
    return _image_from_reps(cp, window_size)
コード例 #5
0
def create_lastfired(df_devs):
    """
    creates the last fired representation
    """
    return create_changepoint(df_devs)