コード例 #1
0
ファイル: raw.py プロジェクト: longdongchuan/pyadlml
def corr_devices_01(rep, figsize=(19,14)):
    """ correlation between the on and off states of every device.
    Parameters
    ----------
    rep: pd.DataFrame
        A dataframe where columns are devices and rows are a binary representation
        e.g raw, changepoint, lastfired representation
    
    """
    df = rep.iloc[:,:-1] # get raw without activities
    df = df.reset_index(drop=True)
    df = df.astype(int)

    for device in df.columns:
        mask1 = df[[device]] == 1
        col_off = device + ' Off'
        df[[col_off]] = df[[device]].astype(bool)
        df[[col_off]] = ~df[[col_off]]
        df[[col_off]] = df[[col_off]].astype(int)
        df = df.rename(columns={device: device + ' On'})
        
    dev_count = int(len(df.columns)/2)
    
    ct = df.corr()
    ct_on_on = ct.iloc[:dev_count, :dev_count]
    ct_on_on_values = ct_on_on.values.T
    ct_on_on_devs = list(ct_on_on.index)
    
    ct_on_off = ct.iloc[dev_count:, :dev_count]
    ct_on_off_values = ct_on_off.values.T
    ct_on_off_rows = list(ct_on_off.index)
    ct_on_off_cols = list(ct_on_off.columns)

    fig, (ax1, ax2) = plt.subplots(1,2, figsize=figsize)
    
    # plot on-on corr
    im, cbar = heatmap(ct_on_on_values, ct_on_on_devs, ct_on_on_devs, 
                       ax=ax1, cmap='PuOr', cbarlabel='counts',
                       vmin=-1, vmax=1)

    texts = annotate_heatmap(im, textcolors=("black", "white"), valfmt="{x:.2f}")
    
    # plot on-off corr
    im, cbar = heatmap(ct_on_off_values, ct_on_off_rows, ct_on_off_cols, 
                       ax=ax2, cmap='PuOr', cbarlabel='counts',
                       vmin=-1, vmax=1)
    
    texts = annotate_heatmap(im, textcolors=("black", "white"), valfmt="{x:.2f}")
    
    ax1.set_title("Correlation of on-on signals")
    ax2.set_title("Correlation of on-off signals")
    fig.tight_layout()
    plt.show()
コード例 #2
0
def heatmap_contingency_triggers(df_dev_rep3,
                                 df_act,
                                 figsize=(12, 10),
                                 idle=False,
                                 z_scale=None):
    """
    plot a heatmap TODO write docu
    """

    title = 'Triggers'
    cbarlabel = 'counts'

    tmp = contingency_table_triggers(df_dev_rep3, df_act, idle=idle)
    vals = tmp.values.T
    acts = tmp.columns
    devs = tmp.index

    fig, ax = plt.subplots(figsize=figsize)
    if z_scale == 'log':
        log = True
    else:
        log = False

    im, cbar = heatmap(vals, acts, devs, ax=ax, log=log, cbarlabel=cbarlabel)

    texts = annotate_heatmap(im,
                             textcolors=("white", "black"),
                             log=log,
                             valfmt="{x}")

    ax.set_title(title)
    fig.tight_layout()
    plt.show()
コード例 #3
0
ファイル: raw.py プロジェクト: longdongchuan/pyadlml
def heatmap_contingency_01(X, y, rep='', z_scale=None, figsize=(16,12)):
    """ plots the contingency between features and labels of data
    Parameters
    ----------
    X: pd.DataFrame
        one of the representation raw, lastfired, changepoint
    y: pd.DataFrame
        a series of labels
    rep: string
        the name of the representation to add to the title
    """
    
    cbarlabel = 'counts'
    title = "On/Off contingency for representation " + rep

    df_con = contingency_table_01(X, y)
    
    vals = df_con.values.T
    acts = df_con.columns
    devs = list(df_con.index)
    
    # format x labels
    for i in range(0,len(devs)):
        if i % 2 == 0:
            tmp = devs[i][:-3]
            devs[i] = tmp + 'Off'
        else:
            devs[i] = 'On'

    if z_scale == 'log':
        log = True
    else:
        log = False

    fig, ax = plt.subplots(figsize=figsize)
    im, cbar = heatmap(vals, acts, devs, ax=ax, log=log, cbarlabel=cbarlabel)
    
    texts = annotate_heatmap(im, log=log, textcolors=("white", "black"), valfmt="{x:.0f}")
    
    # create grid for heatmap into every pair
    tcks = np.arange((vals.shape[1])/2)*2 + 1.5
    ax.set_xticks(tcks, minor=True)
    ax.grid(which="minor", color="w", linestyle='-', linewidth=2)
    ax.tick_params(which="minor", bottom=False, left=False) 
    
    ax.set_title(title)
    fig.tight_layout()
    return fig
コード例 #4
0
def heatmap_contingency_triggers_01(df_dev_rep3,
                                    df_act,
                                    figsize=(12, 10),
                                    idle=True,
                                    z_scale=None):
    """
    """
    df_con = contingency_table_triggers_01(df_dev_rep3, df_act, idle=idle)
    tmp = df_con.reset_index()
    tmp['index'] = tmp['device'] + ' ' + tmp['val'].astype(str)
    tmp = tmp.set_index('index')
    tmp = tmp.drop(['device', 'val'], axis=1)

    vals = tmp.values.T
    acts = tmp.columns
    devs = list(tmp.index)

    # format x labels
    for i in range(0, len(devs)):
        if i % 2 == 0:
            tmp = devs[i][:-5]
            devs[i] = tmp + 'Off'
        else:
            devs[i] = 'On'

    if z_scale == 'log':
        log = True
    else:
        log = False

    fig, ax = plt.subplots(figsize=figsize)
    im, cbar = heatmap(vals, acts, devs, ax=ax, log=log, cbarlabel='counts')

    texts = annotate_heatmap(im,
                             textcolors=("white", "black"),
                             log=log,
                             valfmt="{x}")

    # create grid for heatmap into every pair
    tcks = np.arange((vals.shape[1]) / 2) * 2 + 1.5
    ax.set_xticks(tcks, minor=True)
    ax.grid(which="minor", color="w", linestyle='-', linewidth=1)
    ax.tick_params(which="minor", bottom=False, left=False)

    ax.set_title("0-1 triggers")
    fig.tight_layout()
    return fig
コード例 #5
0
ファイル: devices.py プロジェクト: longdongchuan/pyadlml
def heatmap_trigger_one_day(df_dev, t_res='1h', figsize=(10, 6)):
    """
    computes the heatmap for one day where all the device triggers are showed
    """
    df = device_triggers_one_day(df_dev.copy(), t_res)
    x_labels = list(df.index)
    y_labels = df.columns
    dat = df.values.T

    # begin plotting
    fig, ax = plt.subplots(figsize=figsize)
    im, cbar = heatmap(dat,
                       y_labels,
                       x_labels,
                       ax=ax,
                       cmap='viridis',
                       cbarlabel='counts')
    ax.set_title("Device triggers cummulative over one day")
    ax.set_xlabel('time')

    # format the x-axis
    def func(x, p):
        if True:
            if int(x / k) < 10:
                return '0{}:00'.format(int(x / k) + 1)
            else:
                return '{}:00'.format(int(x / k) + 1)

    # calculate the tick positions
    a, b = ax.get_xlim()
    k = (b - a) / 23
    tcks_pos = np.arange(0, 23) * k + (-0.5 + k)

    x_locator = ticker.FixedLocator(tcks_pos)
    ax.xaxis.set_major_formatter(ticker.FuncFormatter(func))
    ax.xaxis.set_major_locator(x_locator)
    ax.set_aspect(aspect='auto')
    return fig
コード例 #6
0
def heatmap_trigger_one_day(df_devs=None,
                            lst_devs=None,
                            df_tod=None,
                            t_res='1h',
                            figsize=None,
                            cmap=None,
                            file_path=None):
    """
    Plots the heatmap for one day where all the device triggers are shown

    Parameters
    ----------
    df_devs : pd.DataFrame, optional
        recorded devices from a dataset. Fore more information refer to the
        :ref:`user guide<device_dataframe>`.
    lst_devs : lst of str, optional
        A list of devices that are included in the statistic. The list can be a
        subset of the recorded activities or contain activities that are not recorded.
    df_tod : pd.DataFrame
        A precomputed transition table. If the *df_trans* parameter is given, parameters
        *df_acts* and *lst_acts* are ignored. The transition table can be computed
        in :ref:`stats <stats_acts_trans>`.
    t_res : str of {'[1-12]h', default='1h'
        the resolution, time_bins in hours. The number are
    figsize : (float, float), default: None
        width, height in inches. If not provided, the figsize is inferred by automatically.
    cmap : str or Colormap, optional
        The Colormap instance or registered colormap name used to map scalar
        data to colors. This parameter is ignored for RGB(A) data.
        Defaults 'viridis'.
    file_path : str, optional
        If set, saves the plot under the given file path and return *None* instead
        of returning the figure.

    Examples
    --------
    >>> from pyadlml.plots import plot_device_hm_time_trigger
    >>> plot_device_hm_time_trigger(data.df_devices, t_res='1h')

    .. image:: ../_static/images/plots/dev_hm_trigger_one_day.png
       :height: 300px
       :width: 500 px
       :scale: 100 %
       :alt: alternate text
       :align: center

    Returns
    -------
    res : fig or None
        Either a figure if file_path is not specified or nothing.
    """
    assert not (df_devs is None and df_tod is None)
    title = "Device triggers cummulative over one day"
    xlabel = 'time'

    df = (device_triggers_one_day(df_devs.copy(),
                                  lst_devs=lst_devs,
                                  t_res=t_res) if df_tod is None else df_tod)
    num_dev = len(list(df.columns))
    figsize = (_num_items_2_heatmap_one_day_figsize(num_dev)
               if figsize is None else figsize)
    cmap = (get_sequential_color() if cmap is None else cmap)

    x_labels = list(df.index)
    y_labels = df.columns
    dat = df.values.T

    # begin plotting
    fig, ax = plt.subplots(figsize=figsize)
    im, cbar = heatmap(dat,
                       y_labels,
                       x_labels,
                       ax=ax,
                       cmap=cmap,
                       cbarlabel='counts')
    ax.set_title(title)
    ax.set_xlabel(xlabel)

    # format the x-axis
    def func(x, p):
        if True:
            if int(x / k) < 10:
                return '0{}:00'.format(int(x / k) + 1)
            else:
                return '{}:00'.format(int(x / k) + 1)

    # calculate the tick positions
    a, b = ax.get_xlim()
    k = (b - a) / 24
    tcks_pos = np.arange(0, 23) * k + (-0.5 + k)

    x_locator = ticker.FixedLocator(tcks_pos)
    ax.xaxis.set_major_formatter(ticker.FuncFormatter(func))
    ax.xaxis.set_major_locator(x_locator)
    ax.set_aspect(aspect='auto')

    if file_path is not None:
        savefig(fig, file_path)
        return
    else:
        return fig