# num_packet_before_disable = 1000 with open('Position_and_Speed_31_01_2020.csv', 'w', newline='') as csvfile: writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) #Open Event Data Real Time Discarded CSV file with open('Events_31_01_2020.csv', 'w', newline='') as csvfile: writerevents = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) #Open Event Data Real Time Discarded CSV file with open('Noise_Events_31_01_2020.csv', 'w', newline='') as csvfile: writernoise = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) while True: try: data = device.get_event("events") if data is not None: (pol_events, num_pol_event, special_events, num_special_event, frame_ts, frames, imu_events, num_imu_event) = data if pol_events is not None: for event in pol_events: (t, x, y, p, noise) = event if(noise == 1): if (Collection_Period_1 == False) and (Positive_n_events == 0) and (Negative_n_events == 0): t1 = t t2 = t + 1000 t3 = t + 11000 t4 = t + 12000
event_batch_size = 0 event_batch_size_max = 10000 iterations = 0 with Timer("Processing entire dataset"): while True: event_batch = np.empty((1, 5)) while True: if event_batch_size >= event_batch_size_max: break try: iterations += 1 data = dvs_device.get_event() if data is not None: ( pol_events, num_pol_event, special_events, num_special_event, frames_ts, frames, imu_events, num_imu_event, ) = data if pol_events is not None: event_batch = np.concatenate( (event_batch, pol_events))