コード例 #1
0
def get_estimate_age(url):
    try:
        image = url_to_image(url)
    except urllib.error.HTTPError:
        return False
    except urllib.error.URLError:
        return False
    except:
        return False

    agender = PyAgender()
    faces = agender.detect_genders_ages(image)
    if len(faces) > 0:
        return round(faces[0]['age'])
    else:
        return 0
コード例 #2
0
class Agender():
    def __init__(self):
        self.agender = PyAgender()

    def detect(self, img_path):
        # img_path = '/Users/woffee/www/language_design/couples-posing-800x450.jpg'
        faces = self.agender.detect_genders_ages(cv2.imread(img_path))
        return faces
コード例 #3
0
def gender_detect(path):
    '''
    gender_detect: takes in an image file, uses OpenCV and 
    PyAgender to detected the gender of the individual in the 
    live image

    Parameters
    ----------
    file: file name + location where file is stored

    Returns
    -------
    Prediction string (i.e. "male")
    '''
    agender = PyAgender()
    face = agender.detect_genders_ages(cv2.imread(path))
    gender = face[0]['gender']
    if gender >= 0.5:
        return 'Female'
    else:
        return 'Male'
コード例 #4
0
ファイル: AgenderCore.py プロジェクト: neosinha/agenus
    def __init__(self, cascadePath=None, odir=None):
        '''
        Constructor for PixelCore
        '''
        self.cascPath = os.path.join(os.getcwd(), 'models', 'haarcascades',
                                     'haarcascade_frontalface_extended.xml')

        resnetwts = os.path.join(cascadePath, 'models', 'weights.18-4.06.hdf5')
        if cascadePath:
            self.cascPath = os.path.join(os.path.abspath(cascadePath),
                                         'models', 'haarcascades',
                                         'haarcascade_frontalface_alt.xml')

        print('Loading HAAR-Cascade file: %s' % (self.cascPath))
        self.faceCascade = cv2.CascadeClassifier(self.cascPath)
        self.face_size = 32
        self.agender = PyAgender()
コード例 #5
0
pictures = []
for i in onder_70:
    print(i)
    path = find(i,x)
    print(path)
    if str(path) != "None":
        z = find2('*.jpg', path)
        #pictures = pictures + " " + '"' + str(z[0]) + '"'
        #print(z)
        pictures.append(str(z[0]))
print(pictures)

#facemorpher.morpher(pictures, plot=True)
facemorpher.averager(pictures, plot=True)

agender = PyAgender() 
# see available options in __init__() src

faces = agender.detect_genders_ages(cv2.imread("/Users/ellen/Documents/Twente/Q2/Introduction to biometrics/Final/result.png"))
print(faces)


# In[3]:


# Vergelijk de gemiddelde leeftijd met de detected leeftijd van de morph van deze leeftijd groep
from pyagender import PyAgender
import cv2
import matplotlib.pyplot as plt

agender = PyAgender() 
コード例 #6
0
from pyagender import PyAgender
import numpy as np
import matplotlib.pyplot as plt
import cv2
from urllib.request import urlopen
from datetime import datetime

print("Importation Complete!")


def list_format(phrase):
    return phrase[1:-1].replace("'", "").replace(" ", "").split(',')


df = pd.read_csv("with_source.csv", encoding='utf-8')
agender = PyAgender()
print("csv read, agender created")

df['urls'] = df['urls'].apply(list_format)

img_sample = df.iloc[2]['urls'][1]

req = urlopen(img_sample)
arr = np.asarray(bytearray(req.read()), dtype=np.uint8)
img = cv2.imdecode(arr, -1)

no_profile = img
print("no profile announced")

data = {
    'name': [],
コード例 #7
0
import face_recognition
import pickle
import sqlite3
import sys
import os
import cv2
from pyagender import PyAgender

res = PyAgender().detect_genders_ages(cv2.imread(sys.argv[1]))
print('Age: {}'.format(res[0]['age']))
print('Gender: {}'.format(res[0]['gender']))

filename = sys.argv[1]
known_image = face_recognition.load_image_file(filename)
known_encoding = face_recognition.face_encodings(known_image)[0]

con = sqlite3.connect('comparator.db')
cur = con.cursor()

## write faces
# cur.execute('create table if not exists faces (id INTEGER PRIMARY KEY AUTOINCREMENT, name varchar(50), face blob)')
# name_in_db = os.path.splitext(os.path.basename(filename))[0]
# sql = 'insert into faces (name, face) values (?, ?)'
# cur.execute(sql, (name_in_db, pickle.dumps(known_encoding)))
# con.commit()

## recognize faces
cur.execute('select name, face from faces')
face_encodings = cur.fetchall()
for i in range (0, len(face_encodings)):
    fe = pickle.loads(face_encodings[i][1])
コード例 #8
0
 def __init__(self):
     self.agender = PyAgender()
コード例 #9
0
ファイル: main_attributes.py プロジェクト: domingomery/vision
import imutils
import cv2
import numpy as np
import sys
from utils import dirfiles, num2fixstr, imread
from pyagender import PyAgender
import dlib

predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')


# parameters for loading data and images
expression_model_path = '_mini_XCEPTION.106-0.65.hdf5'
expression_classifier = load_model(expression_model_path, compile=False)
EXPRESSIONS           = ["angry","disgust","scared", "happy", "sad", "surprised","neutral"]
agender               = PyAgender()


dirpath = '../faces/'
img_names = dirfiles(dirpath,'*.jpg')

n = len(img_names)
print(n)
print(img_names)

gender_age = np.zeros((n,2))

landmarks = np.zeros((n,136))

for i in range(n):
    img = img_names[i]
コード例 #10
0
def age_estimation(foto):
    agender = PyAgender()
    faces = agender.detect_genders_ages(cv2.imread(foto))
    age = faces[0]['age']
    return round(age)
コード例 #11
0
    # define store path
    store_root_dir = r"D:\Datasets\Korean"
    store_image_dir = os.path.join(store_root_dir, dataset_name + postfix)
    if os.path.exists(store_image_dir) is False:
        os.makedirs(store_image_dir)
    if os.path.exists(os.path.join(root_data_dir,
                                   dataset_name + '_F')) is False:
        os.makedirs(os.path.join(root_data_dir, dataset_name + '_F'))
    if os.path.exists(os.path.join(root_data_dir,
                                   dataset_name + '_E')) is False:
        os.makedirs(os.path.join(root_data_dir, dataset_name + '_E'))
    for filename in tqdm(os.listdir(image_root_dir)):
        filepath = os.path.join(image_root_dir, filename)
        if os.path.isdir(filepath):
            continue
        width = -1
        height = -1
        with Image.open(filepath) as img:
            width, height = img.size

            agender = PyAgender()
            # see available options in __init__() src

            faces = agender.detect_genders_ages(cv2.imread(MY_IMAGE))

        # print(width, ", ", height)
        # if width <= 128 or height <= 128: #F
        #     shutil.move(filepath, os.path.join(os.path.join(root_data_dir, dataset_name + '_F'), filename))
        # elif width <= 256 or height <= 256: #E
        #     shutil.move(filepath, os.path.join(os.path.join(root_data_dir, dataset_name + '_E'), filename))
コード例 #12
0
def img_clss():
    new_file_id=uuid.uuid1() 
    try:
        data_file = request.files['img']
        file_name = data_file.name
        data_file.save(f'{os.getcwd()}/images/{data_file.filename}')
        data_file.close()    
        img_file = os.listdir(f'{os.getcwd()}/images/')       
        print('Image ',img_file[0])
        
        agender = PyAgender() 
        path = os.path.join(f'{os.getcwd()}/images/', img_file[0])
        print('Path ', path)
        faces = agender.detect_genders_ages(cv2.imread(path))
        print('Faces ',faces)
        if faces[0]['gender'] < 0.5:
            faces[0]['gender'] = 'male'
        else:
            faces[0]['gender'] = 'female'
        faces[0]['age'] = str(faces[0]['age'] ).split('.')[0]
        print(faces[0])
        resp = make_response(faces[0])
        resp.headers.set('Content-Type','multipart/form-data')
        print('Response ', resp)
        return resp

    except Exception as e:
        print(e)
        try:
            # Camera capture
            path1 = f'{os.getcwd()}/images/'
            image_string = str(request.form.get('file_string'))
            image_newstring = image_string.replace("data:image/jpeg;base64,", "") 
            imgdata = base64.b64decode(image_newstring)
            filename = os.path.join(path1 , new_file_id.hex+'.jpg')
            with open(filename, 'wb') as f:
                f.write(imgdata)
                f.close()
            img_file = os.listdir(f'{os.getcwd()}/images/')
            print('Image ',img_file[0])
            
            agender = PyAgender() 
            path = os.path.join(f'{os.getcwd()}/images/', img_file[0])
            print('Path ',path)
            faces = agender.detect_genders_ages(cv2.imread(path))
            print('Faces ' ,faces)
            if faces[0]['gender'] < 0.5:
                faces[0]['gender'] = 'male'
            else:
                faces[0]['gender'] = 'female'
            faces[0]['age'] = str(faces[0]['age'] ).split('.')[0]
            print(faces[0])
            resp = make_response(faces[0])
            resp.headers.set('Content-Type','multipart/form-data')
            target_dir=f'{os.getcwd()}/images/'
            with os.scandir(target_dir) as entries:
                for entry in entries:
                    time.sleep(1)
                    if entry.is_file() or entry.is_symlink():
                        os.remove(entry)
            print('Response ', resp)
            return resp
            
        except Exception as e:
            print(e)
            print("Something went wrong with your image. Kindly try with different image")
       
    finally:
        target_dir=f'{os.getcwd()}/images/'
        with os.scandir(target_dir) as entries:
            for entry in entries:
                time.sleep(1)
                print(entry)
                if entry.is_file() or entry.is_symlink():
                    os.remove(entry)
        print("Image Deleted")
コード例 #13
0
        srcs.append(img)

    for i in srcs:
        if not is_absolute(i):
            # if img has relative URL, make it absolute by joining
            i = urljoin(url, i)
        if i[0:2] == "//":
            i = "http:" + i
        if is_valid(i):
            urls.append(i)
    return urls


## commence scraping

agender = PyAgender()

for i in get_all_images(url):
    response = urllib.request.Request(i, headers=headers)

    try:
        with urllib.request.urlopen(response) as url:
            with open('temp.jpg', 'wb') as f:
                f.write(url.read())
    except:
        print("Error: image not read")
        pass

    try:
        faces = agender.detect_genders_ages(cv2.imread("temp.jpg"))
    except:
コード例 #14
0
import random


def GetPhoto():
    url = 'https://www.thispersondoesnotexist.com/image'
    user_agent = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.47 Safari/537.36'
    request = urllib.request.Request(url, headers={'User-Agent': user_agent})
    response = urllib.request.urlopen(request)
    html = response.read()
    f = open('img.jpg', 'wb')
    f.write(html)
    f.close()


GetPhoto()
agender = PyAgender()
faces = agender.detect_genders_ages(cv2.imread('img.jpg'))
age = int(faces[0]['age'])
print("age: ", age)
print("date of birth: " + str(int(str(datetime.now())[:4]) - age) + '.' +
      str(random.randint(1, 12)) + '.' + str(random.randint(1, 31)))
if faces[0]['gender'] < 0.5:
    print('gender: male')
    gender = 'male'
elif faces[0]['gender'] > 0.5:
    print('gender: female')
    gender = 'female'
else:
    print('gender: idk')
    if random.randint(0, 1):
        gender = 'male'
コード例 #15
0
ファイル: gen_age.py プロジェクト: Dheeraj1998/ShopSmart
import cv2
import numpy as np
import pyrebase

from pyagender import PyAgender

agender = PyAgender()
capture = cv2.VideoCapture(0)

config = {
    "apiKey": "AIzaSyDT8zvCg7Ax3h_IYtpwaawKe_80LmoN0aY",
    "authDomain": "craeye-fa4f0.firebaseapp.com",
    "databaseURL": "https://craeye-fa4f0.firebaseio.com",
    "storageBucket": "craeye-fa4f0.appspot.com"
}
firebase = pyrebase.initialize_app(config)

fb_database = firebase.database()

while (True):
    ret, frame = capture.read()

    faces = agender.detect_genders_ages(frame)

    age_values = []
    gender_values = []
    input_data = {}

    if faces:
        for int_index in range(0, len(faces)):
            for value in faces[int_index]:
コード例 #16
0
 def __init__(self):
     self._detector = MTCNN()
     self._fa = FaceAligner()
     self._image_utils = Image_Utils()
     self._agender = PyAgender()
     self._gap_db = Gap_Db()
コード例 #17
0
class Age_Gender_Detect():
    def __init__(self):
        self._detector = MTCNN()
        self._fa = FaceAligner()
        self._image_utils = Image_Utils()
        self._agender = PyAgender()
        self._gap_db = Gap_Db()

    def detect_face_age_gender(self, fn, debug_mode=False):
        print("\nprocessing file %s..." % fn)

        # check if faces already detected for the family
        family_image_name = os.path.basename(fn).split('.')[0]
        family_id = self._gap_db.get_family_id(family_image_name)
        if self._gap_db.is_face_done(family_id):
            print("Faces already detected for the family! Moving on...\n")
            return
        else:
            # if faces not detected for the family yet, remove previous faces for
            # the family
            os.system("rm -rf %s" %
                      (os.path.join(FACE_IMG_DIR, '%s*' % family_image_name)))

        img_original = cv2.imread(fn)
        if img_original.shape[0] >= img_original.shape[1]:
            img = imutils.resize(img_original, height=2000)
        else:
            img = imutils.resize(img_original, width=2000)

        faces = self._detector.detect_faces(img)
        self._image_utils.squarify_box(faces)

        if debug_mode:
            self._image_utils.show_key_points(img, faces)
        face_patches = self._image_utils.show_face_patches(img,
                                                           faces,
                                                           show=False)

        # align faces
        faces_aligned = self._fa.align(faces, img)
        assert len(faces_aligned) == len(face_patches)

        # detect age and gender
        ages = []
        genders = []
        for face in face_patches:
            g, a = self._agender.gender_age(face)
            gender = ['female' if g > 0.5 else 'male'][0]
            age = int(a)
            ages.append(age)
            genders.append(gender)
            print("gender: %s, age: %i" % (gender, age))

        # save faces
        face_images = []
        face_no = 0
        for face in faces_aligned:
            face_fn = family_image_name + '_' + str(face_no) + '.jpg'
            face_images.append(face_fn[:-4])  # remove 'extension'
            face_f_fn = os.path.join(FACE_IMG_DIR, face_fn)
            cv2.imwrite(face_f_fn, face)
            face_no += 1

        ## update database
        for image, age, gender in zip(face_images, ages, genders):
            self._gap_db.update_faces(family_id, image, age, gender)
コード例 #18
0
    "#climatechangescam", "#globalwarmingalarmism", "#globalwarmingcult",
    "#climatechangefrenzy", "#globalwarmingfraud", "#globalwarmingscam",
    "#globalwarmingnonsense", "#globalwarmingbullshit", "#climatefraud",
    "#climatescam", "#climatecult", "#climatenonsense", "#climatebullshit",
    "#climatechangebullshit", "#climatechangenonsense", "#climatechangecult",
    "#climatehysteria"
]

#raw_data = [json.loads(line) for line in open(path_raw_data, 'r')]
#raw_data = []
_d = 0
_b = 0

r = []

agender = PyAgender()

#with open(path_out_data, 'w') as fp:
#    json.dump(r, fp)

#for i, tweet in enumerate(raw_data):
tweets = []
with open(path_raw_data, 'r') as infile:
    with open(path_out_data, 'w') as outfile:
        for i, line in enumerate(infile):
            tweet_in = json.loads(line)
            if i % 1000 == 0:
                print(f"{i}/?")
            #if i >= 100:
            #    break
            tweet = {}
コード例 #19
0
# -*- coding: utf-8 -*-
"""Untitled0.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1yA-cb7JozrTN3GaMLwhWENbCnqeB2YC_
"""

from fer import FER
import cv2

img = cv2.imread("/content/pic22.jpg")
detector = FER()
detector.detect_emotions(img)
emotion, score = detector.top_emotion(img)
score
emotion

from pyagender import PyAgender
agender = PyAgender()
faces = agender.detect_genders_ages(cv2.imread("/content/pic22.jpg"))
faces
コード例 #20
0
        age_before_morph[idx] = age_estimation(i)
        # print(age_after_morph)
        # print(face_distance_after_morph)
        # print(actual_age)
        stop = time.time()
        print("Time: ", stop-start)
    np.savez(save_name, age_after_morph=age_after_morph,age_before_morph=age_before_morph, actual_age=actual_age, face_dist_after = face_distance_after_morph, face_dist_before=face_distance_before_morph)
   # Plots_print()
    #return age_after_morph, face_distance_after_morph, actual_age, face_distance_before_morph, age_before_morph

def read_npz_after_morph(file):
    x = np.load(file, mmap_mode='r')

    actual_age = x['actual_age'] # Array with actual ages
    age_after_morph = x['age_after_morph'] # Array with detected ages after morphing
    age_before_morph = x['age_before_morph'] # Array with detected ages before morphing
    face_dist_after = x['face_dist_after'] # Face distance after morphing
    face_dist_before = x['face_dist_before'] # Face distance before morphing
    
    return actual_age, age_after_morph, age_before_morph, face_dist_after, face_dist_before


agender = PyAgender()
path = "../SiblingsDB/SiblingsDB_preprocessed/"
#after_morphing("/Users/ellen/Documents/GitHub/Age-Obfuscation-Morphing/averages/average20_30_N3(1).png", path)
#after_morphing("/Users/ellen/Documents/GitHub/Age-Obfuscation-Morphing/averages/average30_40_N3(0).png", path)
# after_morphing("/Users/ellen/Documents/GitHub/Age-Obfuscation-Morphing/averages/average40_50_N3(0).png", path)
# after_morphing("/Users/ellen/Documents/GitHub/Age-Obfuscation-Morphing/averages/average50_60_N3(0).png", path)
after_morphing("../averages/average60_70_handpickedN2.png", path, agender)

コード例 #21
0
from pyagender import PyAgender
import cv2
import math
from sklearn import neighbors
import os
import os.path
import pickle
from PIL import Image, ImageDraw
import face_recognition
from face_recognition.face_recognition_cli import image_files_in_folder
import pandas as pd
import numpy as np
import datetime

agender = PyAgender()

df = pd.DataFrame(columns= ['name','age', 'gender','time_in','time_out'])

def predict( imgMe,path,knn_clf=None, model_path=None, distance_threshold=0.6):
 
    if knn_clf is None and model_path is None:
        raise Exception("Must supply knn classifier either thourgh knn_clf or model_path")

    # Load a trained KNN model (if one was passed in)
    if knn_clf is None:
        with open(model_path, 'rb') as f:
            knn_clf = pickle.load(f)

    # Load image file and find face locations
    X_img = imgMe
    X_face_locations = face_recognition.face_locations(X_img)
コード例 #22
0
def detect(image):
    agenda = PyAgender()
    ans = agenda.detect_genders_ages(image)
    return ans
コード例 #23
0
# -*- coding: utf-8 -*-
"""
Created on Tue Dec  1 11:36:51 2020

@author: murie
"""
#import os, fnmatch, facemorpher
from pyagender import PyAgender
import cv2

agender = PyAgender()  # see available options in __init__() src

faces = agender.detect_genders_ages(
    cv2.imread(
        "C:/Users/murie/Documents/school/master/1B/Introduction2Biometrics/project_git/datasets/test"
    ))
image = agender.detect_genders_ages(cv2.imread("acaro.png"))