コード例 #1
0
def npv_weighted(x, first_year, last_year, w1, w2, w1_function, w2_function,
                 r):
    if min(x.index) > first_year or max(x.index) < last_year:
        return np.nan

    x[first_year] = pyam.fill_series(x, first_year)
    x[last_year] = pyam.fill_series(x, last_year)

    years = [
        i for i in x.index
        if i >= first_year and i <= last_year and ~np.isnan(x[i])
    ]
    years.sort()

    # loop over years
    if not np.isnan(x[first_year]) and not np.isnan(x[last_year]):
        value = 0
        for (i, yr) in enumerate(years[:-1]):
            next_yr = years[i + 1]
            dt = next_yr - yr
            if dt not in w1.keys():
                w1[dt] = w1_function(r, dt)
            if dt not in w2.keys():
                w2[dt] = w2_function(r, dt)
            # the summation is shifted to include the first year fully in sum,
            # otherwise, would return a weighted average of `yr` and `next_yr`
            value += w1[dt] * x[yr] + w2[dt] * x[next_yr]

        # the loop above does not include the last element in range `last_year`,
        # therefore added explicitly
        value += x[last_year]

        return value / (last_year - first_year + 1)
コード例 #2
0
def test_fill_series_datetime():
    # note that the series is not order and the index is defined as float
    y = pd.Series(
        data=[3, 1],
        index=[datetime.datetime(2001, 1, 1), datetime.datetime(2003, 1, 1)]
    )
    assert fill_series(y, datetime.datetime(2002, 1, 1)) == 2.
コード例 #3
0
ファイル: test_timeseries.py プロジェクト: pjuergens/pyam
def test_fill_series_out_of_range():
    y = pd.Series(data=[np.nan, 1, 3, 1],
                  index=[2002.0, 2005.0, 2007.0, 2013.0])
    assert fill_series(y, 2001) is np.nan
コード例 #4
0
ファイル: test_timeseries.py プロジェクト: pjuergens/pyam
def test_fill_series():
    # note that the series is not order and the index is defined as float
    y = pd.Series(data=[np.nan, 1, 4, 1],
                  index=[2002.0, 2008.0, 2005.0, 2013.0])
    assert fill_series(y, 2006) == 3.0