コード例 #1
0
def smoothed_aggregation_helmholtz_solver(A, planewaves, use_constant=(True, {'last_level':0}), 
        symmetry='symmetric', strength='symmetric', aggregate='standard',
        smooth=('energy', {'krylov': 'gmres'}),
        presmoother=('gauss_seidel_nr',{'sweep':'symmetric'}),
        postsmoother=('gauss_seidel_nr',{'sweep':'symmetric'}),
        improve_candidates='default', max_levels = 10, max_coarse = 100, **kwargs):
    
    """
    Create a multilevel solver using Smoothed Aggregation (SA) for a 2D Helmholtz operator

    Parameters
    ----------
    A : {csr_matrix, bsr_matrix}
        Sparse NxN matrix in CSR or BSR format
    planewaves : { list }
        [pw_0, pw_1, ..., pw_n], where the k-th tuple pw_k is of the form (fn,
        args).  fn is a callable and args is a dictionary of arguments for fn.
        This k-th tuple is used to define any new planewaves (i.e., new coarse
        grid basis functions) to be appended to the existing B_k at that level. 
            The function fn must return functions defined on the finest level, 
        i.e., a collection of vector(s) of length A.shape[0].  These vectors
        are then restricted to the appropriate level, where they enrich the 
        coarse space.
            Instead of a tuple, None can be used to stipulate no introduction
        of planewaves at that level.  If len(planewaves) < max_levels, the 
        last entry is used to define coarser level planewaves.
    use_constant : {tuple}
        Tuple of the form (bool, {'last_level':int}).  The boolean denotes 
        whether to introduce the constant in B at level 0.  'last_level' denotes
        the final level to use the constant in B.  That is, if 'last_level' is 1,
        then the vector in B corresponding to the constant on level 0 is dropped 
        from B at level 2.
            This is important, because using constant based interpolation beyond
        the Nyquist rate will result in poor solver performance.
    symmetry : {string}
        'symmetric' refers to both real and complex symmetric
        'hermitian' refers to both complex Hermitian and real Hermitian
        'nonsymmetric' i.e. nonsymmetric in a hermitian sense
        Note that for the strictly real case, symmetric and hermitian are the same
        Note that this flag does not denote definiteness of the operator.
    strength : ['symmetric', 'classical', 'evolution', ('predefined', {'C' : csr_matrix}), None]
        Method used to determine the strength of connection between unknowns of
        the linear system.  Method-specific parameters may be passed in using a
        tuple, e.g. strength=('symmetric',{'theta' : 0.25 }). If strength=None,
        all nonzero entries of the matrix are considered strong.  
            See notes below for varying this parameter on a per level basis.  Also,
        see notes below for using a predefined strength matrix on each level.
    aggregate : ['standard', 'lloyd', 'naive', ('predefined', {'AggOp' : csr_matrix})]
        Method used to aggregate nodes.  See notes below for varying this
        parameter on a per level basis.  Also, see notes below for using a
        predefined aggregation on each level.
    smooth : ['jacobi', 'richardson', 'energy', None]
        Method used to smooth the tentative prolongator.  Method-specific
        parameters may be passed in using a tuple, e.g.  smooth=
        ('jacobi',{'filter' : True }).  See notes below for varying this
        parameter on a per level basis.
    presmoother : {tuple, string, list} : default ('block_gauss_seidel', {'sweep':'symmetric'})
        Defines the presmoother for the multilevel cycling.  The default block
        Gauss-Seidel option defaults to point-wise Gauss-Seidel, if the matrix
        is CSR or is a BSR matrix with blocksize of 1.  See notes below for
        varying this parameter on a per level basis.
    postsmoother : {tuple, string, list}
        Same as presmoother, except defines the postsmoother.
    improve_candidates : {list} : default [('block_gauss_seidel', {'sweep':'symmetric'}), None]
        The ith entry defines the method used to improve the candidates B on
        level i.  If the list is shorter than max_levels, then the last entry
        will define the method for all levels lower.
            The list elements are relaxation descriptors of the form used for
        presmoother and postsmoother.  A value of None implies no action on B.
    max_levels : {integer} : default 10
        Maximum number of levels to be used in the multilevel solver.
    max_coarse : {integer} : default 500
        Maximum number of variables permitted on the coarse grid. 

    Other Parameters
    ----------------
    coarse_solver : ['splu','lu', ... ]
        Solver used at the coarsest level of the MG hierarchy 

    Returns
    -------
    ml : multilevel_solver
        Multigrid hierarchy of matrices and prolongation operators

    See Also
    --------
    multilevel_solver, smoothed_aggregation_solver

    Notes
    -----
    - The additional parameters are passed through as arguments to
      multilevel_solver.  Refer to pyamg.multilevel_solver for additional
      documentation.

    - The parameters smooth, strength, aggregate, presmoother, postsmoother can
      be varied on a per level basis.  For different methods on different
      levels, use a list as input so that the ith entry defines the method at
      the ith level.  If there are more levels in the hierarchy than list
      entries, the last entry will define the method for all levels lower.
      
      Examples are:
      smooth=[('jacobi', {'omega':1.0}), None, 'jacobi']
      presmoother=[('block_gauss_seidel', {'sweep':symmetric}), 'sor']
      aggregate=['standard', 'naive']
      strength=[('symmetric', {'theta':0.25}), ('symmetric',{'theta':0.08})]

    - Predefined strength of connection and aggregation schemes can be
      specified.  These options are best used together, but aggregation can be
      predefined while strength of connection is not.

      For predefined strength of connection, use a list consisting of tuples of
      the form ('predefined', {'C' : C0}), where C0 is a csr_matrix and each
      degree-of-freedom in C0 represents a supernode.  For instance to
      predefine a three-level hierarchy, use [('predefined', {'C' : C0}),
      ('predefined', {'C' : C1}) ].
      
      Similarly for predefined aggregation, use a list of tuples.  For instance
      to predefine a three-level hierarchy, use [('predefined', {'AggOp' :
      Agg0}), ('predefined', {'AggOp' : Agg1}) ], where the dimensions of A,
      Agg0 and Agg1 are compatible, i.e.  Agg0.shape[1] == A.shape[0] and
      Agg1.shape[1] == Agg0.shape[0].  Each AggOp is a csr_matrix.

    Examples
    --------
    >>> from pyamg import smoothed_aggregation_helmholtz_solver, poisson
    >>> from scipy.sparse.linalg import cg
    >>> from scipy import rand
    >>> A = poisson((100,100), format='csr')           # matrix
    >>> b = rand(A.shape[0])                           # random RHS
    >>> ml = smoothed_aggregation_solver(A)            # AMG solver
    >>> M = ml.aspreconditioner(cycle='V')             # preconditioner
    >>> x,info = cg(A, b, tol=1e-8, maxiter=30, M=M)   # solve with CG

    References
    ----------
    .. [1] L. N. Olson and J. B. Schroder. Smoothed Aggregation for Helmholtz
    Problems. Numerical Linear Algebra with Applications.  pp. 361--386.  17
    (2010).

    """
    if not (isspmatrix_csr(A) or isspmatrix_bsr(A)):
        raise TypeError('argument A must have type csr_matrix or bsr_matrix')

    A = A.asfptype()
    
    if (symmetry != 'symmetric') and (symmetry != 'hermitian') and (symmetry != 'nonsymmetric'):
        raise ValueError('expected \'symmetric\', \'nonsymmetric\' or \'hermitian\' for the symmetry parameter ')
    A.symmetry = symmetry

    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')
    
    ##
    # Preprocess and extend planewaves to length max_levels
    planewaves = preprocess_planewaves(planewaves, max_levels)
    # Check that the user has defined functions for B at each level
    use_const, args = unpack_arg(use_constant)
    first_planewave_level = -1
    for pw in planewaves:
        first_planewave_level += 1
        if pw is not None:
            break
    ##    
    if (use_const == False) and (planewaves[0] == None):
        raise ValueError('No functions defined for B on the finest level, ' + \
              'either use_constant must be true, or planewaves must be defined for level 0')
    elif (use_const == True) and (args['last_level'] < first_planewave_level-1):
        raise ValueError('Some levels have no function(s) defined for B.  ' + \
                         'Change use_constant and/or planewave arguments.')
        
    ##
    # Levelize the user parameters, so that they become lists describing the
    # desired user option on each level.
    max_levels, max_coarse, strength =\
        levelize_strength_or_aggregation(strength, max_levels, max_coarse)
    max_levels, max_coarse, aggregate =\
        levelize_strength_or_aggregation(aggregate, max_levels, max_coarse)
    improve_candidates = levelize_smooth_or_improve_candidates(improve_candidates, max_levels)
    smooth = levelize_smooth_or_improve_candidates(smooth, max_levels)


    ##
    # Start first level
    levels = []
    levels.append( multilevel_solver.level() )
    levels[-1].A = A                            # matrix
    levels[-1].B = numpy.zeros((A.shape[0],0))  # place-holder for near-nullspace candidates

    zeros_0 = numpy.zeros((levels[0].A.shape[0],), dtype=A.dtype)
    while len(levels) < max_levels and levels[-1].A.shape[0] > max_coarse:
        A = levels[0].A
        A_l = levels[-1].A
        zeros_l = numpy.zeros((levels[-1].A.shape[0],), dtype=A.dtype)

        ##
        # Generate additions to n-th level candidates
        if planewaves[len(levels)-1] != None:
            fn, args = unpack_arg(planewaves[len(levels)-1])
            Bcoarse2 = numpy.array(fn(**args))

            ##
            # As in alpha-SA, relax the candidates before restriction
            if improve_candidates[0] is not None:
                Bcoarse2 = relaxation_as_linear_operator(improve_candidates[0], A, zeros_0)*Bcoarse2
            
            ##
            # Restrict Bcoarse2 to current level
            for i in range(len(levels)-1):
                Bcoarse2 = levels[i].R*Bcoarse2
            # relax after restriction
            if improve_candidates[len(levels)-1] is not None:
                Bcoarse2 =relaxation_as_linear_operator(improve_candidates[len(levels)-1],A_l,zeros_l)*Bcoarse2
        else:
            Bcoarse2 = numpy.zeros((A_l.shape[0],0),dtype=A.dtype)

        ##
        # Deal with the use of constant in interpolation
        use_const, args = unpack_arg(use_constant)
        if use_const and len(levels) == 1:
            # If level 0, and the constant is to be used in interpolation
           levels[0].B = numpy.hstack( (numpy.ones((A.shape[0],1), dtype=A.dtype), Bcoarse2) )
        elif use_const and args['last_level'] == len(levels)-2: 
            # If the previous level was the last level to use the constant, then remove the
            # coarse grid function based on the constant from B
            levels[-1].B = numpy.hstack( (levels[-1].B[:,1:], Bcoarse2) )
        else:
            levels[-1].B = numpy.hstack((levels[-1].B, Bcoarse2))
        
        ##
        # Create and Append new level
        extend_hierarchy(levels, strength, aggregate, smooth, [None for i in range(max_levels)] ,keep=True)
    
    ml = multilevel_solver(levels, **kwargs)
    change_smoothers(ml, presmoother, postsmoother)
    return ml
コード例 #2
0
def smoothed_aggregation_solver(A,
                                B=None,
                                BH=None,
                                symmetry='hermitian',
                                strength='symmetric',
                                aggregate='standard',
                                smooth=('jacobi', {
                                    'omega': 4.0 / 3.0
                                }),
                                presmoother=('block_gauss_seidel', {
                                    'sweep': 'symmetric'
                                }),
                                postsmoother=('block_gauss_seidel', {
                                    'sweep': 'symmetric'
                                }),
                                improve_candidates=[('block_gauss_seidel', {
                                    'sweep': 'symmetric',
                                    'iterations': 4
                                }), None],
                                max_levels=10,
                                max_coarse=10,
                                diagonal_dominance=False,
                                keep=False,
                                **kwargs):
    """Create a multilevel solver using classical-style Smoothed Aggregation (SA).

    Parameters
    ----------
    A : csr_matrix, bsr_matrix
        Sparse NxN matrix in CSR or BSR format

    B : None, array_like
        Right near-nullspace candidates stored in the columns of an NxK array.
        The default value B=None is equivalent to B=ones((N,1))

    BH : None, array_like
        Left near-nullspace candidates stored in the columns of an NxK array.
        BH is only used if symmetry is 'nonsymmetric'.
        The default value B=None is equivalent to BH=B.copy()

    symmetry : string
        'symmetric' refers to both real and complex symmetric
        'hermitian' refers to both complex Hermitian and real Hermitian
        'nonsymmetric' i.e. nonsymmetric in a hermitian sense
        Note, in the strictly real case, symmetric and hermitian are the same.
        Note, this flag does not denote definiteness of the operator.

    strength : string or list
        Method used to determine the strength of connection between unknowns of
        the linear system.  Method-specific parameters may be passed in using a
        tuple, e.g. strength=('symmetric',{'theta' : 0.25 }). If strength=None,
        all nonzero entries of the matrix are considered strong.
        Choose from 'symmetric', 'classical', 'evolution', 'algebraic_distance',
        'affinity', ('predefined', {'C' : csr_matrix}), None

    aggregate : string or list
        Method used to aggregate nodes.
        Choose from 'standard', 'lloyd', 'naive',
        ('predefined', {'AggOp' : csr_matrix})

    smooth : list
        Method used to smooth the tentative prolongator.  Method-specific
        parameters may be passed in using a tuple, e.g.  smooth=
        ('jacobi',{'filter' : True }).
        Choose from 'jacobi', 'richardson', 'energy', None

    presmoother : tuple, string, list
        Defines the presmoother for the multilevel cycling.  The default block
        Gauss-Seidel option defaults to point-wise Gauss-Seidel, if the matrix
        is CSR or is a BSR matrix with blocksize of 1.

    postsmoother : tuple, string, list
        Same as presmoother, except defines the postsmoother.

    improve_candidates : tuple, string, list
        The ith entry defines the method used to improve the candidates B on
        level i.  If the list is shorter than max_levels, then the last entry
        will define the method for all levels lower.  If tuple or string, then
        this single relaxation descriptor defines improve_candidates on all
        levels.
        The list elements are relaxation descriptors of the form used for
        presmoother and postsmoother.  A value of None implies no action on B.

    max_levels : integer
        Maximum number of levels to be used in the multilevel solver.

    max_coarse : integer
        Maximum number of variables permitted on the coarse grid.

    diagonal_dominance : bool, tuple
        If True (or the first tuple entry is True), then avoid coarsening
        diagonally dominant rows.  The second tuple entry requires a
        dictionary, where the key value 'theta' is used to tune the diagonal
        dominance threshold.

    keep : bool
        Flag to indicate keeping extra operators in the hierarchy for
        diagnostics.  For example, if True, then strength of connection (C),
        tentative prolongation (T), and aggregation (AggOp) are kept.

    Other Parameters
    ----------------
    cycle_type : ['V','W','F']
        Structrure of multigrid cycle

    coarse_solver : ['splu', 'lu', 'cholesky, 'pinv', 'gauss_seidel', ... ]
        Solver used at the coarsest level of the MG hierarchy.
        Optionally, may be a tuple (fn, args), where fn is a string such as
        ['splu', 'lu', ...] or a callable function, and args is a dictionary of
        arguments to be passed to fn.

    Returns
    -------
    ml : multilevel_solver
        Multigrid hierarchy of matrices and prolongation operators

    See Also
    --------
    multilevel_solver, classical.ruge_stuben_solver,
    aggregation.smoothed_aggregation_solver

    Notes
    -----
        - This method implements classical-style SA, not root-node style SA
          (see aggregation.rootnode_solver).

        - The additional parameters are passed through as arguments to
          multilevel_solver.  Refer to pyamg.multilevel_solver for additional
          documentation.

        - At each level, four steps are executed in order to define the coarser
          level operator.

          1. Matrix A is given and used to derive a strength matrix, C.

          2. Based on the strength matrix, indices are grouped or aggregated.

          3. The aggregates define coarse nodes and a tentative prolongation
             operator T is defined by injection

          4. The tentative prolongation operator is smoothed by a relaxation
             scheme to improve the quality and extent of interpolation from the
             aggregates to fine nodes.

        - The parameters smooth, strength, aggregate, presmoother, postsmoother
          can be varied on a per level basis.  For different methods on
          different levels, use a list as input so that the i-th entry defines
          the method at the i-th level.  If there are more levels in the
          hierarchy than list entries, the last entry will define the method
          for all levels lower.

          Examples are:
          smooth=[('jacobi', {'omega':1.0}), None, 'jacobi']
          presmoother=[('block_gauss_seidel', {'sweep':symmetric}), 'sor']
          aggregate=['standard', 'naive']
          strength=[('symmetric', {'theta':0.25}), ('symmetric', {'theta':0.08})]

        - Predefined strength of connection and aggregation schemes can be
          specified.  These options are best used together, but aggregation can
          be predefined while strength of connection is not.

          For predefined strength of connection, use a list consisting of
          tuples of the form ('predefined', {'C' : C0}), where C0 is a
          csr_matrix and each degree-of-freedom in C0 represents a supernode.
          For instance to predefine a three-level hierarchy, use
          [('predefined', {'C' : C0}), ('predefined', {'C' : C1}) ].

          Similarly for predefined aggregation, use a list of tuples.  For
          instance to predefine a three-level hierarchy, use [('predefined',
          {'AggOp' : Agg0}), ('predefined', {'AggOp' : Agg1}) ], where the
          dimensions of A, Agg0 and Agg1 are compatible, i.e.  Agg0.shape[1] ==
          A.shape[0] and Agg1.shape[1] == Agg0.shape[0].  Each AggOp is a
          csr_matrix.

    Examples
    --------
    >>> from pyamg import smoothed_aggregation_solver
    >>> from pyamg.gallery import poisson
    >>> from scipy.sparse.linalg import cg
    >>> import numpy as np
    >>> A = poisson((100,100), format='csr')           # matrix
    >>> b = np.ones((A.shape[0]))                      # RHS
    >>> ml = smoothed_aggregation_solver(A)            # AMG solver
    >>> M = ml.aspreconditioner(cycle='V')             # preconditioner
    >>> x,info = cg(A, b, tol=1e-8, maxiter=30, M=M)   # solve with CG

    References
    ----------
    .. [1996VaMaBr] Vanek, P. and Mandel, J. and Brezina, M.,
       "Algebraic Multigrid by Smoothed Aggregation for
       Second and Fourth Order Elliptic Problems",
       Computing, vol. 56, no. 3, pp. 179--196, 1996.
       http://citeseer.ist.psu.edu/vanek96algebraic.html

    """
    if not (isspmatrix_csr(A) or isspmatrix_bsr(A)):
        try:
            A = csr_matrix(A)
            warn("Implicit conversion of A to CSR", SparseEfficiencyWarning)
        except BaseException:
            raise TypeError(
                'Argument A must have type csr_matrix or bsr_matrix, or be convertible to csr_matrix'
            )

    A = A.asfptype()

    if (symmetry != 'symmetric') and (symmetry != 'hermitian') and\
            (symmetry != 'nonsymmetric'):
        raise ValueError(
            'expected \'symmetric\', \'nonsymmetric\' or \'hermitian\' for the symmetry parameter '
        )
    A.symmetry = symmetry

    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')

    # Right near nullspace candidates use constant for each variable as default
    if B is None:
        B = np.kron(
            np.ones((int(A.shape[0] / blocksize(A)), 1), dtype=A.dtype),
            np.eye(blocksize(A), dtype=A.dtype))
    else:
        B = np.asarray(B, dtype=A.dtype)
        if len(B.shape) == 1:
            B = B.reshape(-1, 1)
        if B.shape[0] != A.shape[0]:
            raise ValueError(
                'The near null-space modes B have incorrect dimensions for matrix A'
            )
        if B.shape[1] < blocksize(A):
            warn(
                'Having less target vectors, B.shape[1], than blocksize of A can degrade convergence factors.'
            )

    # Left near nullspace candidates
    if A.symmetry == 'nonsymmetric':
        if BH is None:
            BH = B.copy()
        else:
            BH = np.asarray(BH, dtype=A.dtype)
            if len(BH.shape) == 1:
                BH = BH.reshape(-1, 1)
            if BH.shape[1] != B.shape[1]:
                raise ValueError(
                    'The number of left and right near null-space modes B and BH, must be equal'
                )
            if BH.shape[0] != A.shape[0]:
                raise ValueError(
                    'The near null-space modes BH have incorrect dimensions for matrix A'
                )

    # Levelize the user parameters, so that they become lists describing the
    # desired user option on each level.
    max_levels, max_coarse, strength =\
        levelize_strength_or_aggregation(strength, max_levels, max_coarse)
    max_levels, max_coarse, aggregate =\
        levelize_strength_or_aggregation(aggregate, max_levels, max_coarse)
    improve_candidates =\
        levelize_smooth_or_improve_candidates(improve_candidates, max_levels)
    smooth = levelize_smooth_or_improve_candidates(smooth, max_levels)

    # Construct multilevel structure
    levels = []
    levels.append(multilevel_solver.level())
    levels[-1].A = A  # matrix

    # Append near nullspace candidates
    levels[-1].B = B  # right candidates
    if A.symmetry == 'nonsymmetric':
        levels[-1].BH = BH  # left candidates

    while len(levels) < max_levels and\
            int(levels[-1].A.shape[0]/blocksize(levels[-1].A)) > max_coarse:
        extend_hierarchy(levels, strength, aggregate, smooth,
                         improve_candidates, diagonal_dominance, keep)

    ml = multilevel_solver(levels, **kwargs)
    change_smoothers(ml, presmoother, postsmoother)
    return ml
コード例 #3
0
def smoothed_aggregation_helmholtz_solver(A,
                                          planewaves,
                                          use_constant=(True, {
                                              'last_level': 0
                                          }),
                                          symmetry='symmetric',
                                          strength='symmetric',
                                          aggregate='standard',
                                          smooth=('energy', {
                                              'krylov': 'gmres'
                                          }),
                                          presmoother=('gauss_seidel_nr', {
                                              'sweep': 'symmetric'
                                          }),
                                          postsmoother=('gauss_seidel_nr', {
                                              'sweep': 'symmetric'
                                          }),
                                          improve_candidates='default',
                                          max_levels=10,
                                          max_coarse=100,
                                          **kwargs):
    """
    Create a multilevel solver using Smoothed Aggregation (SA) for a 2D Helmholtz operator

    Parameters
    ----------
    A : {csr_matrix, bsr_matrix}
        Sparse NxN matrix in CSR or BSR format
    planewaves : { list }
        [pw_0, pw_1, ..., pw_n], where the k-th tuple pw_k is of the form (fn,
        args).  fn is a callable and args is a dictionary of arguments for fn.
        This k-th tuple is used to define any new planewaves (i.e., new coarse
        grid basis functions) to be appended to the existing B_k at that level. 
            The function fn must return functions defined on the finest level, 
        i.e., a collection of vector(s) of length A.shape[0].  These vectors
        are then restricted to the appropriate level, where they enrich the 
        coarse space.
            Instead of a tuple, None can be used to stipulate no introduction
        of planewaves at that level.  If len(planewaves) < max_levels, the 
        last entry is used to define coarser level planewaves.
    use_constant : {tuple}
        Tuple of the form (bool, {'last_level':int}).  The boolean denotes 
        whether to introduce the constant in B at level 0.  'last_level' denotes
        the final level to use the constant in B.  That is, if 'last_level' is 1,
        then the vector in B corresponding to the constant on level 0 is dropped 
        from B at level 2.
            This is important, because using constant based interpolation beyond
        the Nyquist rate will result in poor solver performance.
    symmetry : {string}
        'symmetric' refers to both real and complex symmetric
        'hermitian' refers to both complex Hermitian and real Hermitian
        'nonsymmetric' i.e. nonsymmetric in a hermitian sense
        Note that for the strictly real case, symmetric and hermitian are the same
        Note that this flag does not denote definiteness of the operator.
    strength : ['symmetric', 'classical', 'evolution', ('predefined', {'C' : csr_matrix}), None]
        Method used to determine the strength of connection between unknowns of
        the linear system.  Method-specific parameters may be passed in using a
        tuple, e.g. strength=('symmetric',{'theta' : 0.25 }). If strength=None,
        all nonzero entries of the matrix are considered strong.  
            See notes below for varying this parameter on a per level basis.  Also,
        see notes below for using a predefined strength matrix on each level.
    aggregate : ['standard', 'lloyd', 'naive', ('predefined', {'AggOp' : csr_matrix})]
        Method used to aggregate nodes.  See notes below for varying this
        parameter on a per level basis.  Also, see notes below for using a
        predefined aggregation on each level.
    smooth : ['jacobi', 'richardson', 'energy', None]
        Method used to smooth the tentative prolongator.  Method-specific
        parameters may be passed in using a tuple, e.g.  smooth=
        ('jacobi',{'filter' : True }).  See notes below for varying this
        parameter on a per level basis.
    presmoother : {tuple, string, list} : default ('block_gauss_seidel', {'sweep':'symmetric'})
        Defines the presmoother for the multilevel cycling.  The default block
        Gauss-Seidel option defaults to point-wise Gauss-Seidel, if the matrix
        is CSR or is a BSR matrix with blocksize of 1.  See notes below for
        varying this parameter on a per level basis.
    postsmoother : {tuple, string, list}
        Same as presmoother, except defines the postsmoother.
    improve_candidates : {list} : default [('block_gauss_seidel', {'sweep':'symmetric'}), None]
        The ith entry defines the method used to improve the candidates B on
        level i.  If the list is shorter than max_levels, then the last entry
        will define the method for all levels lower.
            The list elements are relaxation descriptors of the form used for
        presmoother and postsmoother.  A value of None implies no action on B.
    max_levels : {integer} : default 10
        Maximum number of levels to be used in the multilevel solver.
    max_coarse : {integer} : default 500
        Maximum number of variables permitted on the coarse grid. 

    Other Parameters
    ----------------
    coarse_solver : ['splu','lu', ... ]
        Solver used at the coarsest level of the MG hierarchy 

    Returns
    -------
    ml : multilevel_solver
        Multigrid hierarchy of matrices and prolongation operators

    See Also
    --------
    multilevel_solver, smoothed_aggregation_solver

    Notes
    -----
    - The additional parameters are passed through as arguments to
      multilevel_solver.  Refer to pyamg.multilevel_solver for additional
      documentation.

    - The parameters smooth, strength, aggregate, presmoother, postsmoother can
      be varied on a per level basis.  For different methods on different
      levels, use a list as input so that the ith entry defines the method at
      the ith level.  If there are more levels in the hierarchy than list
      entries, the last entry will define the method for all levels lower.
      
      Examples are:
      smooth=[('jacobi', {'omega':1.0}), None, 'jacobi']
      presmoother=[('block_gauss_seidel', {'sweep':symmetric}), 'sor']
      aggregate=['standard', 'naive']
      strength=[('symmetric', {'theta':0.25}), ('symmetric',{'theta':0.08})]

    - Predefined strength of connection and aggregation schemes can be
      specified.  These options are best used together, but aggregation can be
      predefined while strength of connection is not.

      For predefined strength of connection, use a list consisting of tuples of
      the form ('predefined', {'C' : C0}), where C0 is a csr_matrix and each
      degree-of-freedom in C0 represents a supernode.  For instance to
      predefine a three-level hierarchy, use [('predefined', {'C' : C0}),
      ('predefined', {'C' : C1}) ].
      
      Similarly for predefined aggregation, use a list of tuples.  For instance
      to predefine a three-level hierarchy, use [('predefined', {'AggOp' :
      Agg0}), ('predefined', {'AggOp' : Agg1}) ], where the dimensions of A,
      Agg0 and Agg1 are compatible, i.e.  Agg0.shape[1] == A.shape[0] and
      Agg1.shape[1] == Agg0.shape[0].  Each AggOp is a csr_matrix.

    Examples
    --------
    >>> from pyamg import smoothed_aggregation_helmholtz_solver, poisson
    >>> from scipy.sparse.linalg import cg
    >>> from scipy import rand
    >>> A = poisson((100,100), format='csr')           # matrix
    >>> b = rand(A.shape[0])                           # random RHS
    >>> ml = smoothed_aggregation_solver(A)            # AMG solver
    >>> M = ml.aspreconditioner(cycle='V')             # preconditioner
    >>> x,info = cg(A, b, tol=1e-8, maxiter=30, M=M)   # solve with CG

    References
    ----------
    .. [1] L. N. Olson and J. B. Schroder. Smoothed Aggregation for Helmholtz
    Problems. Numerical Linear Algebra with Applications.  pp. 361--386.  17
    (2010).

    """
    if not (isspmatrix_csr(A) or isspmatrix_bsr(A)):
        raise TypeError('argument A must have type csr_matrix or bsr_matrix')

    A = A.asfptype()

    if (symmetry != 'symmetric') and (symmetry != 'hermitian') and (
            symmetry != 'nonsymmetric'):
        raise ValueError(
            'expected \'symmetric\', \'nonsymmetric\' or \'hermitian\' for the symmetry parameter '
        )
    A.symmetry = symmetry

    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')

    ##
    # Preprocess and extend planewaves to length max_levels
    planewaves = preprocess_planewaves(planewaves, max_levels)
    # Check that the user has defined functions for B at each level
    use_const, args = unpack_arg(use_constant)
    first_planewave_level = -1
    for pw in planewaves:
        first_planewave_level += 1
        if pw is not None:
            break
    ##
    if (use_const == False) and (planewaves[0] == None):
        raise ValueError('No functions defined for B on the finest level, ' + \
              'either use_constant must be true, or planewaves must be defined for level 0')
    elif (use_const
          == True) and (args['last_level'] < first_planewave_level - 1):
        raise ValueError('Some levels have no function(s) defined for B.  ' + \
                         'Change use_constant and/or planewave arguments.')

    ##
    # Levelize the user parameters, so that they become lists describing the
    # desired user option on each level.
    max_levels, max_coarse, strength =\
        levelize_strength_or_aggregation(strength, max_levels, max_coarse)
    max_levels, max_coarse, aggregate =\
        levelize_strength_or_aggregation(aggregate, max_levels, max_coarse)
    improve_candidates = levelize_smooth_or_improve_candidates(
        improve_candidates, max_levels)
    smooth = levelize_smooth_or_improve_candidates(smooth, max_levels)

    ##
    # Start first level
    levels = []
    levels.append(multilevel_solver.level())
    levels[-1].A = A  # matrix
    levels[-1].B = numpy.zeros(
        (A.shape[0], 0))  # place-holder for near-nullspace candidates

    zeros_0 = numpy.zeros((levels[0].A.shape[0], ), dtype=A.dtype)
    while len(levels) < max_levels and levels[-1].A.shape[0] > max_coarse:
        A = levels[0].A
        A_l = levels[-1].A
        zeros_l = numpy.zeros((levels[-1].A.shape[0], ), dtype=A.dtype)

        ##
        # Generate additions to n-th level candidates
        if planewaves[len(levels) - 1] != None:
            fn, args = unpack_arg(planewaves[len(levels) - 1])
            Bcoarse2 = numpy.array(fn(**args))

            ##
            # As in alpha-SA, relax the candidates before restriction
            if improve_candidates[0] is not None:
                Bcoarse2 = relaxation_as_linear_operator(
                    improve_candidates[0], A, zeros_0) * Bcoarse2

            ##
            # Restrict Bcoarse2 to current level
            for i in range(len(levels) - 1):
                Bcoarse2 = levels[i].R * Bcoarse2
            # relax after restriction
            if improve_candidates[len(levels) - 1] is not None:
                Bcoarse2 = relaxation_as_linear_operator(
                    improve_candidates[len(levels) - 1], A_l,
                    zeros_l) * Bcoarse2
        else:
            Bcoarse2 = numpy.zeros((A_l.shape[0], 0), dtype=A.dtype)

        ##
        # Deal with the use of constant in interpolation
        use_const, args = unpack_arg(use_constant)
        if use_const and len(levels) == 1:
            # If level 0, and the constant is to be used in interpolation
            levels[0].B = numpy.hstack((numpy.ones((A.shape[0], 1),
                                                   dtype=A.dtype), Bcoarse2))
        elif use_const and args['last_level'] == len(levels) - 2:
            # If the previous level was the last level to use the constant, then remove the
            # coarse grid function based on the constant from B
            levels[-1].B = numpy.hstack((levels[-1].B[:, 1:], Bcoarse2))
        else:
            levels[-1].B = numpy.hstack((levels[-1].B, Bcoarse2))

        ##
        # Create and Append new level
        extend_hierarchy(levels,
                         strength,
                         aggregate,
                         smooth, [None for i in range(max_levels)],
                         keep=True)

    ml = multilevel_solver(levels, **kwargs)
    change_smoothers(ml, presmoother, postsmoother)
    return ml
コード例 #4
0
ファイル: aggregation.py プロジェクト: ben-s-southworth/pyamg
def smoothed_aggregation_solver(A, B=None, BH=None,
                                symmetry='hermitian', strength='symmetric',
                                aggregate='standard',
                                smooth=('jacobi', {'omega': 4.0/3.0}),
                                presmoother=('block_gauss_seidel',
                                             {'sweep': 'symmetric'}),
                                postsmoother=('block_gauss_seidel',
                                              {'sweep': 'symmetric'}),
                                improve_candidates=[('block_gauss_seidel',
                                                    {'sweep': 'symmetric',
                                                     'iterations': 4}),
                                                    None],
                                max_levels = 10, max_coarse = 10,
                                diagonal_dominance=False,
                                keep=False, **kwargs):
    """
    Create a multilevel solver using classical-style Smoothed Aggregation (SA)

    Parameters
    ----------
    A : {csr_matrix, bsr_matrix}
        Sparse NxN matrix in CSR or BSR format
    B : {None, array_like}
        Right near-nullspace candidates stored in the columns of an NxK array.
        The default value B=None is equivalent to B=ones((N,1))
    BH : {None, array_like}
        Left near-nullspace candidates stored in the columns of an NxK array.
        BH is only used if symmetry is 'nonsymmetric'.
        The default value B=None is equivalent to BH=B.copy()
    symmetry : {string}
        'symmetric' refers to both real and complex symmetric
        'hermitian' refers to both complex Hermitian and real Hermitian
        'nonsymmetric' i.e. nonsymmetric in a hermitian sense
        Note, in the strictly real case, symmetric and hermitian are the same
        Note, this flag does not denote definiteness of the operator.
    strength : {list} : default ['symmetric', 'classical', 'evolution',
               'algebraic_distance', 'affinity',
               ('predefined', {'C' : csr_matrix}), None]
        Method used to determine the strength of connection between unknowns of
        the linear system.  Method-specific parameters may be passed in using a
        tuple, e.g. strength=('symmetric',{'theta' : 0.25 }). If strength=None,
        all nonzero entries of the matrix are considered strong.
        See notes below for varying this parameter on a per level basis.  Also,
        see notes below for using a predefined strength matrix on each level.
    aggregate : {list} : default ['standard', 'lloyd', 'naive',
                ('predefined', {'AggOp' : csr_matrix})]
        Method used to aggregate nodes.  See notes below for varying this
        parameter on a per level basis.  Also, see notes below for using a
        predefined aggregation on each level.
    smooth : {list} : default ['jacobi', 'richardson', 'energy', None]
        Method used to smooth the tentative prolongator.  Method-specific
        parameters may be passed in using a tuple, e.g.  smooth=
        ('jacobi',{'filter' : True }).  See notes below for varying this
        parameter on a per level basis.
    presmoother : {tuple, string, list} : default ('block_gauss_seidel',
                  {'sweep':'symmetric'})
        Defines the presmoother for the multilevel cycling.  The default block
        Gauss-Seidel option defaults to point-wise Gauss-Seidel, if the matrix
        is CSR or is a BSR matrix with blocksize of 1.  See notes below for
        varying this parameter on a per level basis.
    postsmoother : {tuple, string, list}
        Same as presmoother, except defines the postsmoother.
    improve_candidates : {tuple, string, list} : default
                        [('block_gauss_seidel',
                         {'sweep': 'symmetric', 'iterations': 4}), None]
        The ith entry defines the method used to improve the candidates B on
        level i.  If the list is shorter than max_levels, then the last entry
        will define the method for all levels lower.  If tuple or string, then
        this single relaxation descriptor defines improve_candidates on all
        levels.
        The list elements are relaxation descriptors of the form used for
        presmoother and postsmoother.  A value of None implies no action on B.
    max_levels : {integer} : default 10
        Maximum number of levels to be used in the multilevel solver.
    max_coarse : {integer} : default 500
        Maximum number of variables permitted on the coarse grid.
    diagonal_dominance : {bool, tuple} : default False
        If True (or the first tuple entry is True), then avoid coarsening
        diagonally dominant rows.  The second tuple entry requires a
        dictionary, where the key value 'theta' is used to tune the diagonal
        dominance threshold.
    keep : {bool} : default False
        Flag to indicate keeping extra operators in the hierarchy for
        diagnostics.  For example, if True, then strength of connection (C),
        tentative prolongation (T), and aggregation (AggOp) are kept.

    Other Parameters
    ----------------
    cycle_type : ['V','W','F']
        Structrure of multigrid cycle
    coarse_solver : ['splu', 'lu', 'cholesky, 'pinv', 'gauss_seidel', ... ]
        Solver used at the coarsest level of the MG hierarchy.
            Optionally, may be a tuple (fn, args), where fn is a string such as
        ['splu', 'lu', ...] or a callable function, and args is a dictionary of
        arguments to be passed to fn.
    setup_complexity : bool
        For a detailed, more accurate setup complexity, pass in 
        'setup_complexity' = True. This will slow down performance, but
        increase accuracy of complexity count. 

    Returns
    -------
    ml : multilevel_solver
        Multigrid hierarchy of matrices and prolongation operators

    See Also
    --------
    multilevel_solver, classical.ruge_stuben_solver,
    aggregation.smoothed_aggregation_solver

    Notes
    -----
        - This method implements classical-style SA, not root-node style SA
          (see aggregation.rootnode_solver).

        - The additional parameters are passed through as arguments to
          multilevel_solver.  Refer to pyamg.multilevel_solver for additional
          documentation.

        - At each level, four steps are executed in order to define the coarser
          level operator.

          1. Matrix A is given and used to derive a strength matrix, C.

          2. Based on the strength matrix, indices are grouped or aggregated.

          3. The aggregates define coarse nodes and a tentative prolongation
             operator T is defined by injection

          4. The tentative prolongation operator is smoothed by a relaxation
             scheme to improve the quality and extent of interpolation from the
             aggregates to fine nodes.

        - The parameters smooth, strength, aggregate, presmoother, postsmoother
          can be varied on a per level basis.  For different methods on
          different levels, use a list as input so that the i-th entry defines
          the method at the i-th level.  If there are more levels in the
          hierarchy than list entries, the last entry will define the method
          for all levels lower.

          Examples are:
          smooth=[('jacobi', {'omega':1.0}), None, 'jacobi']
          presmoother=[('block_gauss_seidel', {'sweep':symmetric}), 'sor']
          aggregate=['standard', 'naive']
          strength=[('symmetric', {'theta':0.25}), ('symmetric',
                                                    {'theta':0.08})]

        - Predefined strength of connection and aggregation schemes can be
          specified.  These options are best used together, but aggregation can
          be predefined while strength of connection is not.

          For predefined strength of connection, use a list consisting of
          tuples of the form ('predefined', {'C' : C0}), where C0 is a
          csr_matrix and each degree-of-freedom in C0 represents a supernode.
          For instance to predefine a three-level hierarchy, use
          [('predefined', {'C' : C0}), ('predefined', {'C' : C1}) ].

          Similarly for predefined aggregation, use a list of tuples.  For
          instance to predefine a three-level hierarchy, use [('predefined',
          {'AggOp' : Agg0}), ('predefined', {'AggOp' : Agg1}) ], where the
          dimensions of A, Agg0 and Agg1 are compatible, i.e.  Agg0.shape[1] ==
          A.shape[0] and Agg1.shape[1] == Agg0.shape[0].  Each AggOp is a
          csr_matrix.

    Examples
    --------
    >>> from pyamg import smoothed_aggregation_solver
    >>> from pyamg.gallery import poisson
    >>> from scipy.sparse.linalg import cg
    >>> import numpy as np
    >>> A = poisson((100,100), format='csr')           # matrix
    >>> b = np.ones((A.shape[0]))                      # RHS
    >>> ml = smoothed_aggregation_solver(A)            # AMG solver
    >>> M = ml.aspreconditioner(cycle='V')             # preconditioner
    >>> x,info = cg(A, b, tol=1e-8, maxiter=30, M=M)   # solve with CG

    References
    ----------
    .. [1] Vanek, P. and Mandel, J. and Brezina, M.,
       "Algebraic Multigrid by Smoothed Aggregation for
       Second and Fourth Order Elliptic Problems",
       Computing, vol. 56, no. 3, pp. 179--196, 1996.
       http://citeseer.ist.psu.edu/vanek96algebraic.html

    """

    if ('setup_complexity' in kwargs):
        if kwargs['setup_complexity'] == True:
            mat_mat_complexity.__detailed__ = True
        del kwargs['setup_complexity']

    if not (isspmatrix_csr(A) or isspmatrix_bsr(A)):
        try:
            A = csr_matrix(A)
            warn("Implicit conversion of A to CSR",
                 SparseEfficiencyWarning)
        except:
            raise TypeError('Argument A must have type csr_matrix or '
                            'bsr_matrix, or be convertible to csr_matrix')

    A = A.asfptype()

    if (symmetry != 'symmetric') and (symmetry != 'hermitian') and\
            (symmetry != 'nonsymmetric'):
        raise ValueError('expected \'symmetric\', \'nonsymmetric\' or '
                         'hermitian\' for the symmetry parameter ')
    A.symmetry = symmetry

    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')

    # Right near nullspace candidates use constant for each variable as default
    if B is None:
        B = np.kron(np.ones((int(A.shape[0]/blocksize(A)), 1), dtype=A.dtype),
                    np.eye(blocksize(A)))
    else:
        B = np.asarray(B, dtype=A.dtype)
        if len(B.shape) == 1:
            B = B.reshape(-1, 1)
        if B.shape[0] != A.shape[0]:
            raise ValueError('The near null-space modes B have incorrect \
                              dimensions for matrix A')
        if B.shape[1] < blocksize(A):
            warn('Having less target vectors, B.shape[1], than \
                  blocksize of A can degrade convergence factors.')

    # Left near nullspace candidates
    if A.symmetry == 'nonsymmetric':
        if BH is None:
            BH = B.copy()
        else:
            BH = np.asarray(BH, dtype=A.dtype)
            if len(BH.shape) == 1:
                BH = BH.reshape(-1, 1)
            if BH.shape[1] != B.shape[1]:
                raise ValueError('The number of left and right near \
                                  null-space modes B and BH, must be equal')
            if BH.shape[0] != A.shape[0]:
                raise ValueError('The near null-space modes BH have \
                                  incorrect dimensions for matrix A')

    # Levelize the user parameters, so that they become lists describing the
    # desired user option on each level.
    max_levels, max_coarse, strength =\
        levelize_strength_or_aggregation(strength, max_levels, max_coarse)
    max_levels, max_coarse, aggregate =\
        levelize_strength_or_aggregation(aggregate, max_levels, max_coarse)
    improve_candidates =\
        levelize_smooth_or_improve_candidates(improve_candidates, max_levels)
    smooth = levelize_smooth_or_improve_candidates(smooth, max_levels)

    # Construct multilevel structure
    levels = []
    levels.append(multilevel_solver.level())
    levels[-1].A = A          # matrix

    # Append near nullspace candidates
    levels[-1].B = B          # right candidates
    if A.symmetry == 'nonsymmetric':
        levels[-1].BH = BH    # left candidates

    while len(levels) < max_levels and\
            int(levels[-1].A.shape[0]/blocksize(levels[-1].A)) > max_coarse:
        extend_hierarchy(levels, strength, aggregate, smooth,
                         improve_candidates, diagonal_dominance, keep)

    # Construct and return multilevel hierarchy
    ml = multilevel_solver(levels, **kwargs)
    change_smoothers(ml, presmoother, postsmoother)
    return ml
コード例 #5
0
def adaptive_sa_solver(A,
                       initial_candidates=None,
                       symmetry='hermitian',
                       pdef=True,
                       num_candidates=1,
                       candidate_iters=5,
                       improvement_iters=0,
                       epsilon=0.1,
                       max_levels=10,
                       max_coarse=10,
                       aggregate='standard',
                       prepostsmoother=('gauss_seidel', {
                           'sweep': 'symmetric'
                       }),
                       smooth=('jacobi', {}),
                       strength='symmetric',
                       coarse_solver='pinv2',
                       eliminate_local=(False, {
                           'Ca': 1.0
                       }),
                       keep=False,
                       **kwargs):
    """
    Create a multilevel solver using Adaptive Smoothed Aggregation (aSA)

    Parameters
    ----------
    A : {csr_matrix, bsr_matrix}
        Square matrix in CSR or BSR format
    initial_candidates : {None, n x m dense matrix}
        If a matrix, then this forms the basis for the first m candidates.
        Also in this case, the initial setup stage is skipped, because this
        provides the first candidate(s).  If None, then a random initial guess
        and relaxation are used to inform the initial candidate.
    symmetry : {string}
        'symmetric' refers to both real and complex symmetric
        'hermitian' refers to both complex Hermitian and real Hermitian
        Note that for the strictly real case, these two options are the same
        Note that this flag does not denote definiteness of the operator
    pdef : {bool}
        True or False, whether A is known to be positive definite.
    num_candidates : {integer} : default 1
        Number of near-nullspace candidates to generate
    candidate_iters : {integer} : default 5
        Number of smoothing passes/multigrid cycles used at each level of
        the adaptive setup phase
    improvement_iters : {integer} : default 0
        Number of times each candidate is improved
    epsilon : {float} : default 0.1
        Target convergence factor
    max_levels : {integer} : default 10
        Maximum number of levels to be used in the multilevel solver.
    max_coarse : {integer} : default 500
        Maximum number of variables permitted on the coarse grid.
    prepostsmoother : {string or dict}
        Pre- and post-smoother used in the adaptive method
    strength : ['symmetric', 'classical', 'evolution', ('predefined', {'C': csr_matrix}), None]
        Method used to determine the strength of connection between unknowns of
        the linear system.  See smoothed_aggregation_solver(...) documentation.
    aggregate : ['standard', 'lloyd', 'naive', ('predefined', {'AggOp': csr_matrix})]
        Method used to aggregate nodes.  See smoothed_aggregation_solver(...)
        documentation.
    smooth : ['jacobi', 'richardson', 'energy', None]
        Method used used to smooth the tentative prolongator.  See
        smoothed_aggregation_solver(...) documentation
    coarse_solver : ['splu', 'lu', 'cholesky, 'pinv', 'gauss_seidel', ... ]
        Solver used at the coarsest level of the MG hierarchy.
        Optionally, may be a tuple (fn, args), where fn is a string such as
        ['splu', 'lu', ...] or a callable function, and args is a dictionary of
        arguments to be passed to fn.
    eliminate_local : {tuple}
        Length 2 tuple.  If the first entry is True, then eliminate candidates
        where they aren't needed locally, using the second entry of the tuple
        to contain arguments to local elimination routine.  Given the rigid
        sparse data structures, this doesn't help much, if at all, with
        complexity.  Its more of a diagnostic utility.
    keep: {bool} : default False
        Flag to indicate keeping extra operators in the hierarchy for
        diagnostics.  For example, if True, then strength of connection (C),
        tentative prolongation (T), and aggregation (AggOp) are kept.

    Returns
    -------
    multilevel_solver : multilevel_solver
        Smoothed aggregation solver with adaptively generated candidates

    Notes
    -----

    - Floating point value representing the "work" required to generate
      the solver.  This value is the total cost of just relaxation, relative
      to the fine grid.  The relaxation method used is assumed to symmetric
      Gauss-Seidel.

    - Unlike the standard Smoothed Aggregation (SA) method, adaptive SA does
      not require knowledge of near-nullspace candidate vectors.  Instead, an
      adaptive procedure computes one or more candidates 'from scratch'.  This
      approach is useful when no candidates are known or the candidates have
      been invalidated due to changes to matrix A.

    Examples
    --------
    >>> from pyamg.gallery import stencil_grid
    >>> from pyamg.aggregation import adaptive_sa_solver
    >>> import numpy as np
    >>> A=stencil_grid([[-1,-1,-1],[-1,8.0,-1],[-1,-1,-1]],\
                       (31,31),format='csr')
    >>> [asa,work] = adaptive_sa_solver(A,num_candidates=1)
    >>> residuals=[]
    >>> x=asa.solve(b=np.ones((A.shape[0],)), x0=np.ones((A.shape[0],)),\
                    residuals=residuals)

    References
    ----------
    .. [1] Brezina, Falgout, MacLachlan, Manteuffel, McCormick, and Ruge
       "Adaptive Smoothed Aggregation ($\alpha$SA) Multigrid"
       SIAM Review Volume 47,  Issue 2  (2005)
       http://www.cs.umn.edu/~maclach/research/aSA2.pdf

    """

    if not (isspmatrix_csr(A) or isspmatrix_bsr(A)):
        try:
            A = csr_matrix(A)
            warn("Implicit conversion of A to CSR", SparseEfficiencyWarning)
        except:
            raise TypeError('Argument A must have type csr_matrix or\
                            bsr_matrix, or be convertible to csr_matrix')

    A = A.asfptype()
    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')

    # Track work in terms of relaxation
    work = np.zeros((1, ))

    # Levelize the user parameters, so that they become lists describing the
    # desired user option on each level.
    max_levels, max_coarse, strength =\
        levelize_strength_or_aggregation(strength, max_levels, max_coarse)
    max_levels, max_coarse, aggregate =\
        levelize_strength_or_aggregation(aggregate, max_levels, max_coarse)
    smooth = levelize_smooth_or_improve_candidates(smooth, max_levels)

    # Develop initial candidate(s).  Note that any predefined aggregation is
    # preserved.
    if initial_candidates is None:
        B, aggregate, strength =\
            initial_setup_stage(A, symmetry, pdef, candidate_iters, epsilon,
                                max_levels, max_coarse, aggregate,
                                prepostsmoother, smooth, strength, work)
        # Normalize B
        B = (1.0 / norm(B, 'inf')) * B
        num_candidates -= 1
    else:
        # Otherwise, use predefined candidates
        B = initial_candidates
        num_candidates -= B.shape[1]
        # Generate Aggregation and Strength Operators (the brute force way)
        sa = smoothed_aggregation_solver(A,
                                         B=B,
                                         symmetry=symmetry,
                                         presmoother=prepostsmoother,
                                         postsmoother=prepostsmoother,
                                         smooth=smooth,
                                         strength=strength,
                                         max_levels=max_levels,
                                         max_coarse=max_coarse,
                                         aggregate=aggregate,
                                         coarse_solver=coarse_solver,
                                         improve_candidates=None,
                                         keep=True,
                                         **kwargs)
        if len(sa.levels) > 1:
            # Set strength-of-connection and aggregation
            aggregate = [('predefined', {
                'AggOp': sa.levels[i].AggOp.tocsr()
            }) for i in range(len(sa.levels) - 1)]
            strength = [('predefined', {
                'C': sa.levels[i].C.tocsr()
            }) for i in range(len(sa.levels) - 1)]

    # Develop additional candidates
    for i in range(num_candidates):
        x = general_setup_stage(
            smoothed_aggregation_solver(A,
                                        B=B,
                                        symmetry=symmetry,
                                        presmoother=prepostsmoother,
                                        postsmoother=prepostsmoother,
                                        smooth=smooth,
                                        coarse_solver=coarse_solver,
                                        aggregate=aggregate,
                                        strength=strength,
                                        improve_candidates=None,
                                        keep=True,
                                        **kwargs), symmetry, candidate_iters,
            prepostsmoother, smooth, eliminate_local, coarse_solver, work)

        # Normalize x and add to candidate list
        x = x / norm(x, 'inf')
        if np.isinf(x[0]) or np.isnan(x[0]):
            raise ValueError('Adaptive candidate is all 0.')
        B = np.hstack((B, x.reshape(-1, 1)))

    # Improve candidates
    if B.shape[1] > 1 and improvement_iters > 0:
        b = np.zeros((A.shape[0], 1), dtype=A.dtype)
        for i in range(improvement_iters):
            for j in range(B.shape[1]):
                # Run a V-cycle built on everything except candidate j, while
                # using candidate j as the initial guess
                x0 = B[:, 0]
                B = B[:, 1:]
                sa_temp =\
                    smoothed_aggregation_solver(A, B=B, symmetry=symmetry,
                                                presmoother=prepostsmoother,
                                                postsmoother=prepostsmoother,
                                                smooth=smooth,
                                                coarse_solver=coarse_solver,
                                                aggregate=aggregate,
                                                strength=strength,
                                                improve_candidates=None,
                                                keep=True, **kwargs)
                x = sa_temp.solve(b,
                                  x0=x0,
                                  tol=float(np.finfo(np.float).tiny),
                                  maxiter=candidate_iters,
                                  cycle='V')
                work[:] += 2 * sa_temp.operator_complexity() *\
                    sa_temp.levels[0].A.nnz * candidate_iters

                # Apply local elimination
                elim, elim_kwargs = unpack_arg(eliminate_local)
                if elim is True:
                    x = x / norm(x, 'inf')
                    eliminate_local_candidates(x, sa_temp.levels[0].AggOp, A,
                                               sa_temp.levels[0].T,
                                               **elim_kwargs)

                # Normalize x and add to candidate list
                x = x / norm(x, 'inf')
                if np.isinf(x[0]) or np.isnan(x[0]):
                    raise ValueError('Adaptive candidate is all 0.')
                B = np.hstack((B, x.reshape(-1, 1)))

    elif improvement_iters > 0:
        # Special case for improving a single candidate
        max_levels = len(aggregate) + 1
        max_coarse = 0
        for i in range(improvement_iters):
            B, aggregate, strength =\
                initial_setup_stage(A, symmetry, pdef, candidate_iters,
                                    epsilon, max_levels, max_coarse,
                                    aggregate, prepostsmoother, smooth,
                                    strength, work, initial_candidate=B)
            # Normalize B
            B = (1.0 / norm(B, 'inf')) * B

    return [
        smoothed_aggregation_solver(A,
                                    B=B,
                                    symmetry=symmetry,
                                    presmoother=prepostsmoother,
                                    postsmoother=prepostsmoother,
                                    smooth=smooth,
                                    coarse_solver=coarse_solver,
                                    aggregate=aggregate,
                                    strength=strength,
                                    improve_candidates=None,
                                    keep=keep,
                                    **kwargs), work[0] / A.nnz
    ]
コード例 #6
0
ファイル: adaptive.py プロジェクト: pyamg/pyamg
def adaptive_sa_solver(A, initial_candidates=None, symmetry='hermitian',
                       pdef=True, num_candidates=1, candidate_iters=5,
                       improvement_iters=0, epsilon=0.1,
                       max_levels=10, max_coarse=10, aggregate='standard',
                       prepostsmoother=('gauss_seidel',
                                        {'sweep': 'symmetric'}),
                       smooth=('jacobi', {}), strength='symmetric',
                       coarse_solver='pinv2',
                       eliminate_local=(False, {'Ca': 1.0}), keep=False,
                       **kwargs):
    """Create a multilevel solver using Adaptive Smoothed Aggregation (aSA).

    Parameters
    ----------
    A : csr_matrix, bsr_matrix
        Square matrix in CSR or BSR format
    initial_candidates : None, n x m dense matrix
        If a matrix, then this forms the basis for the first m candidates.
        Also in this case, the initial setup stage is skipped, because this
        provides the first candidate(s).  If None, then a random initial guess
        and relaxation are used to inform the initial candidate.
    symmetry : string
        'symmetric' refers to both real and complex symmetric
        'hermitian' refers to both complex Hermitian and real Hermitian
        Note that for the strictly real case, these two options are the same
        Note that this flag does not denote definiteness of the operator
    pdef : bool
        True or False, whether A is known to be positive definite.
    num_candidates : integer
        Number of near-nullspace candidates to generate
    candidate_iters : integer
        Number of smoothing passes/multigrid cycles used at each level of
        the adaptive setup phase
    improvement_iters : integer
        Number of times each candidate is improved
    epsilon : float
        Target convergence factor
    max_levels : integer
        Maximum number of levels to be used in the multilevel solver.
    max_coarse : integer
        Maximum number of variables permitted on the coarse grid.
    prepostsmoother : string or dict
        Pre- and post-smoother used in the adaptive method
    strength : ['symmetric', 'classical', 'evolution', ('predefined', {'C': csr_matrix}), None]
        Method used to determine the strength of connection between unknowns of
        the linear system.  See smoothed_aggregation_solver(...) documentation.
    aggregate : ['standard', 'lloyd', 'naive', ('predefined', {'AggOp': csr_matrix})]
        Method used to aggregate nodes.  See smoothed_aggregation_solver(...)
        documentation.
    smooth : ['jacobi', 'richardson', 'energy', None]
        Method used used to smooth the tentative prolongator.  See
        smoothed_aggregation_solver(...) documentation
    coarse_solver : ['splu', 'lu', 'cholesky, 'pinv', 'gauss_seidel', ... ]
        Solver used at the coarsest level of the MG hierarchy.
        Optionally, may be a tuple (fn, args), where fn is a string such as
        ['splu', 'lu', ...] or a callable function, and args is a dictionary of
        arguments to be passed to fn.
    eliminate_local : tuple
        Length 2 tuple.  If the first entry is True, then eliminate candidates
        where they aren't needed locally, using the second entry of the tuple
        to contain arguments to local elimination routine.  Given the rigid
        sparse data structures, this doesn't help much, if at all, with
        complexity.  Its more of a diagnostic utility.
    keep: bool
        Flag to indicate keeping extra operators in the hierarchy for
        diagnostics.  For example, if True, then strength of connection (C),
        tentative prolongation (T), and aggregation (AggOp) are kept.

    Returns
    -------
    multilevel_solver : multilevel_solver
        Smoothed aggregation solver with adaptively generated candidates

    Notes
    -----
    - Floating point value representing the "work" required to generate
      the solver.  This value is the total cost of just relaxation, relative
      to the fine grid.  The relaxation method used is assumed to symmetric
      Gauss-Seidel.

    - Unlike the standard Smoothed Aggregation (SA) method, adaptive SA does
      not require knowledge of near-nullspace candidate vectors.  Instead, an
      adaptive procedure computes one or more candidates 'from scratch'.  This
      approach is useful when no candidates are known or the candidates have
      been invalidated due to changes to matrix A.

    Examples
    --------
    >>> from pyamg.gallery import stencil_grid
    >>> from pyamg.aggregation import adaptive_sa_solver
    >>> import numpy as np
    >>> A=stencil_grid([[-1,-1,-1],[-1,8.0,-1],[-1,-1,-1]], (31,31),format='csr')
    >>> [asa,work] = adaptive_sa_solver(A,num_candidates=1)
    >>> residuals=[]
    >>> x=asa.solve(b=np.ones((A.shape[0],)), x0=np.ones((A.shape[0],)), residuals=residuals)

    References
    ----------
    .. [1] Brezina, Falgout, MacLachlan, Manteuffel, McCormick, and Ruge
       "Adaptive Smoothed Aggregation (alpha SA) Multigrid"
       SIAM Review Volume 47,  Issue 2  (2005)

    """
    if not (isspmatrix_csr(A) or isspmatrix_bsr(A)):
        try:
            A = csr_matrix(A)
            warn("Implicit conversion of A to CSR", SparseEfficiencyWarning)
        except BaseException:
            raise TypeError('Argument A must have type csr_matrix or\
                            bsr_matrix, or be convertible to csr_matrix')

    A = A.asfptype()
    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')

    # Track work in terms of relaxation
    work = np.zeros((1,))

    # Levelize the user parameters, so that they become lists describing the
    # desired user option on each level.
    max_levels, max_coarse, strength =\
        levelize_strength_or_aggregation(strength, max_levels, max_coarse)
    max_levels, max_coarse, aggregate =\
        levelize_strength_or_aggregation(aggregate, max_levels, max_coarse)
    smooth = levelize_smooth_or_improve_candidates(smooth, max_levels)

    # Develop initial candidate(s).  Note that any predefined aggregation is
    # preserved.
    if initial_candidates is None:
        B, aggregate, strength =\
            initial_setup_stage(A, symmetry, pdef, candidate_iters, epsilon,
                                max_levels, max_coarse, aggregate,
                                prepostsmoother, smooth, strength, work)
        # Normalize B
        B = (1.0/norm(B, 'inf')) * B
        num_candidates -= 1
    else:
        # Otherwise, use predefined candidates
        B = initial_candidates
        num_candidates -= B.shape[1]
        # Generate Aggregation and Strength Operators (the brute force way)
        sa = smoothed_aggregation_solver(A, B=B, symmetry=symmetry,
                                         presmoother=prepostsmoother,
                                         postsmoother=prepostsmoother,
                                         smooth=smooth, strength=strength,
                                         max_levels=max_levels,
                                         max_coarse=max_coarse,
                                         aggregate=aggregate,
                                         coarse_solver=coarse_solver,
                                         improve_candidates=None, keep=True,
                                         **kwargs)
        if len(sa.levels) > 1:
            # Set strength-of-connection and aggregation
            aggregate = [('predefined', {'AggOp': sa.levels[i].AggOp.tocsr()})
                         for i in range(len(sa.levels) - 1)]
            strength = [('predefined', {'C': sa.levels[i].C.tocsr()})
                        for i in range(len(sa.levels) - 1)]

    # Develop additional candidates
    for i in range(num_candidates):
        x = general_setup_stage(
            smoothed_aggregation_solver(A, B=B, symmetry=symmetry,
                                        presmoother=prepostsmoother,
                                        postsmoother=prepostsmoother,
                                        smooth=smooth,
                                        coarse_solver=coarse_solver,
                                        aggregate=aggregate,
                                        strength=strength,
                                        improve_candidates=None,
                                        keep=True, **kwargs),
            symmetry, candidate_iters, prepostsmoother, smooth,
            eliminate_local, coarse_solver, work)

        # Normalize x and add to candidate list
        x = x/norm(x, 'inf')
        if np.isinf(x[0]) or np.isnan(x[0]):
            raise ValueError('Adaptive candidate is all 0.')
        B = np.hstack((B, x.reshape(-1, 1)))

    # Improve candidates
    if B.shape[1] > 1 and improvement_iters > 0:
        b = np.zeros((A.shape[0], 1), dtype=A.dtype)
        for i in range(improvement_iters):
            for j in range(B.shape[1]):
                # Run a V-cycle built on everything except candidate j, while
                # using candidate j as the initial guess
                x0 = B[:, 0]
                B = B[:, 1:]
                sa_temp =\
                    smoothed_aggregation_solver(A, B=B, symmetry=symmetry,
                                                presmoother=prepostsmoother,
                                                postsmoother=prepostsmoother,
                                                smooth=smooth,
                                                coarse_solver=coarse_solver,
                                                aggregate=aggregate,
                                                strength=strength,
                                                improve_candidates=None,
                                                keep=True, **kwargs)
                x = sa_temp.solve(b, x0=x0,
                                  tol=float(np.finfo(np.float).tiny),
                                  maxiter=candidate_iters, cycle='V')
                work[:] += 2 * sa_temp.operator_complexity() *\
                    sa_temp.levels[0].A.nnz * candidate_iters

                # Apply local elimination
                elim, elim_kwargs = unpack_arg(eliminate_local)
                if elim is True:
                    x = x/norm(x, 'inf')
                    eliminate_local_candidates(x, sa_temp.levels[0].AggOp, A,
                                               sa_temp.levels[0].T,
                                               **elim_kwargs)

                # Normalize x and add to candidate list
                x = x/norm(x, 'inf')
                if np.isinf(x[0]) or np.isnan(x[0]):
                    raise ValueError('Adaptive candidate is all 0.')
                B = np.hstack((B, x.reshape(-1, 1)))

    elif improvement_iters > 0:
        # Special case for improving a single candidate
        max_levels = len(aggregate) + 1
        max_coarse = 0
        for i in range(improvement_iters):
            B, aggregate, strength =\
                initial_setup_stage(A, symmetry, pdef, candidate_iters,
                                    epsilon, max_levels, max_coarse,
                                    aggregate, prepostsmoother, smooth,
                                    strength, work, initial_candidate=B)
            # Normalize B
            B = (1.0/norm(B, 'inf'))*B

    return [smoothed_aggregation_solver(A, B=B, symmetry=symmetry,
                                        presmoother=prepostsmoother,
                                        postsmoother=prepostsmoother,
                                        smooth=smooth,
                                        coarse_solver=coarse_solver,
                                        aggregate=aggregate, strength=strength,
                                        improve_candidates=None, keep=keep,
                                        **kwargs),
            work[0]/A.nnz]
コード例 #7
0
ファイル: rootnode.py プロジェクト: lacrymose/pyamg
def rootnode_solver(A, B=None, BH=None,
                    symmetry='hermitian', strength='symmetric',
                    aggregate='standard', smooth='energy',
                    presmoother=('block_gauss_seidel',
                                 {'sweep': 'symmetric'}),
                    postsmoother=('block_gauss_seidel',
                                  {'sweep': 'symmetric'}),
                    improve_candidates=('block_gauss_seidel',
                                        {'sweep': 'symmetric',
                                         'iterations': 4}),
                    max_levels = 10, max_coarse = 10,
                    diagonal_dominance=False, keep=False, **kwargs):
    """
    Create a multilevel solver using root-node based Smoothed Aggregation (SA).
    See the notes below, for the major differences with the classical-style
    smoothed aggregation solver in aggregation.smoothed_aggregation_solver.

    Parameters
    ----------
    A : {csr_matrix, bsr_matrix}
        Sparse NxN matrix in CSR or BSR format
    B : {None, array_like}
        Right near-nullspace candidates stored in the columns of an NxK array.
        K must be >= the blocksize of A (see reference [2]). The default value
        B=None is equivalent to choosing the constant over each block-variable,
        B=np.kron(np.ones((A.shape[0]/blocksize(A), 1)), np.eye(blocksize(A)))
    BH : {None, array_like}
        Left near-nullspace candidates stored in the columns of an NxK array.
        BH is only used if symmetry is 'nonsymmetric'.  K must be >= the
        blocksize of A (see reference [2]). The default value B=None is
        equivalent to choosing the constant over each block-variable,
        B=np.kron(np.ones((A.shape[0]/blocksize(A), 1)), np.eye(blocksize(A)))
    symmetry : {string}
        'symmetric' refers to both real and complex symmetric
        'hermitian' refers to both complex Hermitian and real Hermitian
        'nonsymmetric' i.e. nonsymmetric in a hermitian sense
        Note that for the strictly real case, symmetric and hermitian are
        the same
        Note that this flag does not denote definiteness of the operator.
    strength : {list} : default
        ['symmetric', 'classical', 'evolution', 'algebraic_distance', 'affinity',
            ('predefined', {'C' : csr_matrix}), None]
        Method used to determine the strength of connection between unknowns of
        the linear system.  Method-specific parameters may be passed in using a
        tuple, e.g. strength=('symmetric',{'theta' : 0.25 }). If strength=None,
        all nonzero entries of the matrix are considered strong.
        See notes below for varying this parameter on a per level basis.  Also,
        see notes below for using a predefined strength matrix on each level.
    aggregate : {list} : default ['standard', 'lloyd', 'naive',
                                  ('predefined', {'AggOp' : csr_matrix})]
        Method used to aggregate nodes.  See notes below for varying this
        parameter on a per level basis.  Also, see notes below for using a
        predefined aggregation on each level.
    smooth : {list} : default ['energy', None]
        Method used to smooth the tentative prolongator.  Method-specific
        parameters may be passed in using a tuple, e.g.  smooth=
        ('energy',{'krylov' : 'gmres'}).  Only 'energy' and None are valid
        prolongation smoothing options.  See notes below for varying this
        parameter on a per level basis.
    presmoother : {tuple, string, list} : default ('block_gauss_seidel',
                                                   {'sweep':'symmetric'})
        Defines the presmoother for the multilevel cycling.  The default block
        Gauss-Seidel option defaults to point-wise Gauss-Seidel, if the matrix
        is CSR or is a BSR matrix with blocksize of 1.  See notes below for
        varying this parameter on a per level basis.
    postsmoother : {tuple, string, list}
        Same as presmoother, except defines the postsmoother.
    improve_candidates : {tuple, string, list} : default
                         [('block_gauss_seidel',
                          {'sweep': 'symmetric', 'iterations': 4}), None]
        The ith entry defines the method used to improve the candidates B on
        level i.  If the list is shorter than max_levels, then the last entry
        will define the method for all levels lower.  If tuple or string, then
        this single relaxation descriptor defines improve_candidates on all
        levels.
        The list elements are relaxation descriptors of the form used for
        presmoother and postsmoother.  A value of None implies no action on B.
    max_levels : {integer} : default 10
        Maximum number of levels to be used in the multilevel solver.
    max_coarse : {integer} : default 500
        Maximum number of variables permitted on the coarse grid.
    diagonal_dominance : {bool, tuple} : default False
        If True (or the first tuple entry is True), then avoid coarsening
        diagonally dominant rows.  The second tuple entry requires a
        dictionary, where the key value 'theta' is used to tune the diagonal
        dominance threshold.
    keep : {bool} : default False
        Flag to indicate keeping extra operators in the hierarchy for
        diagnostics.  For example, if True, then strength of connection (C),
        tentative prolongation (T), aggregation (AggOp), and arrays
        storing the C-points (Cpts) and F-points (Fpts) are kept at
        each level.

    Other Parameters
    ----------------
    cycle_type : ['V','W','F']
        Structrure of multigrid cycle
    coarse_solver : ['splu', 'lu', 'cholesky, 'pinv', 'gauss_seidel', ... ]
        Solver used at the coarsest level of the MG hierarchy.
            Optionally, may be a tuple (fn, args), where fn is a string such as
        ['splu', 'lu', ...] or a callable function, and args is a dictionary of
        arguments to be passed to fn.
    setup_complexity : bool
        For a detailed, more accurate setup complexity, pass in 
        'setup_complexity' = True. This will slow down performance, but
        increase accuracy of complexity count. 

    Returns
    -------
    ml : multilevel_solver
        Multigrid hierarchy of matrices and prolongation operators

    See Also
    --------
    multilevel_solver, aggregation.smoothed_aggregation_solver,
    classical.ruge_stuben_solver

    Notes
    -----
         - Root-node style SA differs from classical SA primarily by preserving
           and identity block in the interpolation operator, P.  Each aggregate
           has a "root-node" or "center-node" associated with it, and this
           root-node is injected from the coarse grid to the fine grid.  The
           injection corresponds to the identity block.

         - Only smooth={'energy', None} is supported for prolongation
           smoothing.  See reference [2] below for more details on why the
           'energy' prolongation smoother is the natural counterpart to
           root-node style SA.

        - The additional parameters are passed through as arguments to
          multilevel_solver.  Refer to pyamg.multilevel_solver for additional
          documentation.

        - At each level, four steps are executed in order to define the coarser
          level operator.

          1. Matrix A is given and used to derive a strength matrix, C.

          2. Based on the strength matrix, indices are grouped or aggregated.

          3. The aggregates define coarse nodes and a tentative prolongation
             operator T is defined by injection

          4. The tentative prolongation operator is smoothed by a relaxation
             scheme to improve the quality and extent of interpolation from the
             aggregates to fine nodes.

        - The parameters smooth, strength, aggregate, presmoother, postsmoother
          can be varied on a per level basis.  For different methods on
          different levels, use a list as input so that the i-th entry defines
          the method at the i-th level.  If there are more levels in the
          hierarchy than list entries, the last entry will define the method
          for all levels lower.

          Examples are:
          smooth=[('jacobi', {'omega':1.0}), None, 'jacobi']
          presmoother=[('block_gauss_seidel', {'sweep':symmetric}), 'sor']
          aggregate=['standard', 'naive']
          strength=[('symmetric', {'theta':0.25}),
                    ('symmetric', {'theta':0.08})]

        - Predefined strength of connection and aggregation schemes can be
          specified.  These options are best used together, but aggregation can
          be predefined while strength of connection is not.

          For predefined strength of connection, use a list consisting of
          tuples of the form ('predefined', {'C' : C0}), where C0 is a
          csr_matrix and each degree-of-freedom in C0 represents a supernode.
          For instance to predefine a three-level hierarchy, use
          [('predefined', {'C' : C0}), ('predefined', {'C' : C1}) ].

          Similarly for predefined aggregation, use a list of tuples.  For
          instance to predefine a three-level hierarchy, use [('predefined',
          {'AggOp' : Agg0}), ('predefined', {'AggOp' : Agg1}) ], where the
          dimensions of A, Agg0 and Agg1 are compatible, i.e.  Agg0.shape[1] ==
          A.shape[0] and Agg1.shape[1] == Agg0.shape[0].  Each AggOp is a
          csr_matrix.

          Because this is a root-nodes solver, if a member of the predefined
          aggregation list is predefined, it must be of the form
          ('predefined', {'AggOp' : Agg, 'Cnodes' : Cnodes}).

    Examples
    --------
    >>> from pyamg import rootnode_solver
    >>> from pyamg.gallery import poisson
    >>> from scipy.sparse.linalg import cg
    >>> import numpy as np
    >>> A = poisson((100, 100), format='csr')           # matrix
    >>> b = np.ones((A.shape[0]))                   # RHS
    >>> ml = rootnode_solver(A)                     # AMG solver
    >>> M = ml.aspreconditioner(cycle='V')             # preconditioner
    >>> x, info = cg(A, b, tol=1e-8, maxiter=30, M=M)   # solve with CG

    References
    ----------
    .. [1] Vanek, P. and Mandel, J. and Brezina, M.,
       "Algebraic Multigrid by Smoothed Aggregation for
       Second and Fourth Order Elliptic Problems",
       Computing, vol. 56, no. 3, pp. 179--196, 1996.
       http://citeseer.ist.psu.edu/vanek96algebraic.html
    .. [2] Olson, L. and Schroder, J. and Tuminaro, R.,
       "A general interpolation strategy for algebraic
       multigrid using energy minimization", SIAM Journal
       on Scientific Computing (SISC), vol. 33, pp.
       966--991, 2011.
    """

    if ('setup_complexity' in kwargs):
        if kwargs['setup_complexity'] == True:
            mat_mat_complexity.__detailed__ = True
        del kwargs['setup_complexity']

    if not (isspmatrix_csr(A) or isspmatrix_bsr(A)):
        try:
            A = csr_matrix(A)
            warn("Implicit conversion of A to CSR",
                 SparseEfficiencyWarning)
        except:
            raise TypeError('Argument A must have type csr_matrix, \
                             bsr_matrix, or be convertible to csr_matrix')

    A = A.asfptype()

    if (symmetry != 'symmetric') and (symmetry != 'hermitian') and \
            (symmetry != 'nonsymmetric'):
        raise ValueError('expected \'symmetric\', \'nonsymmetric\' \
                          or \'hermitian\' for the symmetry parameter ')
    A.symmetry = symmetry

    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')

    # Right near nullspace candidates use constant for each variable as default
    if B is None:
        B = np.kron(np.ones((int(A.shape[0]/blocksize(A)), 1), dtype=A.dtype),
                    np.eye(blocksize(A)))
    else:
        B = np.asarray(B, dtype=A.dtype)
        if len(B.shape) == 1:
            B = B.reshape(-1, 1)
        if B.shape[0] != A.shape[0]:
            raise ValueError('The near null-space modes B have incorrect \
                              dimensions for matrix A')
        if B.shape[1] < blocksize(A):
            raise ValueError('B.shape[1] must be >= the blocksize of A')

    # Left near nullspace candidates
    if A.symmetry == 'nonsymmetric':
        if BH is None:
            BH = B.copy()
        else:
            BH = np.asarray(BH, dtype=A.dtype)
            if len(BH.shape) == 1:
                BH = BH.reshape(-1, 1)
            if BH.shape[1] != B.shape[1]:
                raise ValueError('The number of left and right near \
                                  null-space modes B and BH, must be equal')
            if BH.shape[0] != A.shape[0]:
                raise ValueError('The near null-space modes BH have \
                                  incorrect dimensions for matrix A')

    # Levelize the user parameters, so that they become lists describing the
    # desired user option on each level.
    max_levels, max_coarse, strength =\
        levelize_strength_or_aggregation(strength, max_levels, max_coarse)
    max_levels, max_coarse, aggregate =\
        levelize_strength_or_aggregation(aggregate, max_levels, max_coarse)
    improve_candidates =\
        levelize_smooth_or_improve_candidates(improve_candidates, max_levels)
    smooth = levelize_smooth_or_improve_candidates(smooth, max_levels)

    # Construct multilevel structure
    levels = []
    levels.append(multilevel_solver.level())
    levels[-1].A = A          # matrix

    # Append near nullspace candidates
    levels[-1].B = B          # right candidates
    if A.symmetry == 'nonsymmetric':
        levels[-1].BH = BH    # left candidates

    while len(levels) < max_levels and \
            int(levels[-1].A.shape[0]/blocksize(levels[-1].A)) > max_coarse:
        extend_hierarchy(levels, strength, aggregate, smooth,
                         improve_candidates, diagonal_dominance, keep)

    # Construct and return multilevel hierarchy
    ml = multilevel_solver(levels, **kwargs)
    change_smoothers(ml, presmoother, postsmoother)
    return ml
コード例 #8
0
ファイル: rootnode.py プロジェクト: pyamg/pyamg
def rootnode_solver(A, B=None, BH=None,
                    symmetry='hermitian', strength='symmetric',
                    aggregate='standard', smooth='energy',
                    presmoother=('block_gauss_seidel',
                                 {'sweep': 'symmetric'}),
                    postsmoother=('block_gauss_seidel',
                                  {'sweep': 'symmetric'}),
                    improve_candidates=('block_gauss_seidel',
                                        {'sweep': 'symmetric',
                                         'iterations': 4}),
                    max_levels=10, max_coarse=10,
                    diagonal_dominance=False, keep=False, **kwargs):
    """Create a multilevel solver using root-node based Smoothed Aggregation (SA).

    See the notes below, for the major differences with the classical-style
    smoothed aggregation solver in aggregation.smoothed_aggregation_solver.

    Parameters
    ----------
    A : csr_matrix, bsr_matrix
        Sparse NxN matrix in CSR or BSR format

    B : None, array_like
        Right near-nullspace candidates stored in the columns of an NxK array.
        K must be >= the blocksize of A (see reference [2011OlScTu]_). The default value
        B=None is equivalent to choosing the constant over each block-variable,
        B=np.kron(np.ones((A.shape[0]/blocksize(A), 1)), np.eye(blocksize(A)))

    BH : None, array_like
        Left near-nullspace candidates stored in the columns of an NxK array.
        BH is only used if symmetry is 'nonsymmetric'.  K must be >= the
        blocksize of A (see reference [2011OlScTu]_). The default value B=None is
        equivalent to choosing the constant over each block-variable,
        B=np.kron(np.ones((A.shape[0]/blocksize(A), 1)), np.eye(blocksize(A)))

    symmetry : string
        'symmetric' refers to both real and complex symmetric
        'hermitian' refers to both complex Hermitian and real Hermitian
        'nonsymmetric' i.e. nonsymmetric in a hermitian sense
        Note that for the strictly real case, symmetric and hermitian are
        the same
        Note that this flag does not denote definiteness of the operator.

    strength : list
        Method used to determine the strength of connection between unknowns of
        the linear system.  Method-specific parameters may be passed in using a
        tuple, e.g. strength=('symmetric',{'theta' : 0.25 }). If strength=None,
        all nonzero entries of the matrix are considered strong.

    aggregate : list
        Method used to aggregate nodes.

    smooth : list
        Method used to smooth the tentative prolongator.  Method-specific
        parameters may be passed in using a tuple, e.g.  smooth=
        ('energy',{'krylov' : 'gmres'}).  Only 'energy' and None are valid
        prolongation smoothing options.

    presmoother : tuple, string, list
        Defines the presmoother for the multilevel cycling.  The default block
        Gauss-Seidel option defaults to point-wise Gauss-Seidel, if the matrix
        is CSR or is a BSR matrix with blocksize of 1.  See notes below for
        varying this parameter on a per level basis.

    postsmoother : tuple, string, list
        Same as presmoother, except defines the postsmoother.

    improve_candidates : tuple, string, list
        The ith entry defines the method used to improve the candidates B on
        level i.  If the list is shorter than max_levels, then the last entry
        will define the method for all levels lower.  If tuple or string, then
        this single relaxation descriptor defines improve_candidates on all
        levels.
        The list elements are relaxation descriptors of the form used for
        presmoother and postsmoother.  A value of None implies no action on B.

    max_levels : integer
        Maximum number of levels to be used in the multilevel solver.

    max_coarse : integer
        Maximum number of variables permitted on the coarse grid.

    diagonal_dominance : bool, tuple
        If True (or the first tuple entry is True), then avoid coarsening
        diagonally dominant rows.  The second tuple entry requires a
        dictionary, where the key value 'theta' is used to tune the diagonal
        dominance threshold.

    keep : bool
        Flag to indicate keeping extra operators in the hierarchy for
        diagnostics.  For example, if True, then strength of connection (C),
        tentative prolongation (T), aggregation (AggOp), and arrays
        storing the C-points (Cpts) and F-points (Fpts) are kept at
        each level.

    Other Parameters
    ----------------
    cycle_type : ['V','W','F']
        Structrure of multigrid cycle
    coarse_solver : ['splu', 'lu', 'cholesky, 'pinv', 'gauss_seidel', ... ]
        Solver used at the coarsest level of the MG hierarchy.
        Optionally, may be a tuple (fn, args), where fn is a string such as
        ['splu', 'lu', ...] or a callable function, and args is a dictionary of
        arguments to be passed to fn.

    Returns
    -------
    ml : multilevel_solver
        Multigrid hierarchy of matrices and prolongation operators

    See Also
    --------
    multilevel_solver, aggregation.smoothed_aggregation_solver,
    classical.ruge_stuben_solver

    Notes
    -----
         - Root-node style SA differs from classical SA primarily by preserving
           and identity block in the interpolation operator, P.  Each aggregate
           has a "root-node" or "center-node" associated with it, and this
           root-node is injected from the coarse grid to the fine grid.  The
           injection corresponds to the identity block.

         - Only smooth={'energy', None} is supported for prolongation
           smoothing.  See reference [2011OlScTu]_ below for more details on why the
           'energy' prolongation smoother is the natural counterpart to
           root-node style SA.

         - The additional parameters are passed through as arguments to
           multilevel_solver.  Refer to pyamg.multilevel_solver for additional
           documentation.

         - At each level, four steps are executed in order to define the coarser
           level operator.

           1. Matrix A is given and used to derive a strength matrix, C.

           2. Based on the strength matrix, indices are grouped or aggregated.

           3. The aggregates define coarse nodes and a tentative prolongation
              operator T is defined by injection

           4. The tentative prolongation operator is smoothed by a relaxation
              scheme to improve the quality and extent of interpolation from the
              aggregates to fine nodes.

         - The parameters smooth, strength, aggregate, presmoother, postsmoother
           can be varied on a per level basis.  For different methods on
           different levels, use a list as input so that the i-th entry defines
           the method at the i-th level.  If there are more levels in the
           hierarchy than list entries, the last entry will define the method
           for all levels lower.

           Examples are:
           smooth=[('jacobi', {'omega':1.0}), None, 'jacobi']
           presmoother=[('block_gauss_seidel', {'sweep':symmetric}), 'sor']
           aggregate=['standard', 'naive']
           strength=[('symmetric', {'theta':0.25}), ('symmetric', {'theta':0.08})]

         - Predefined strength of connection and aggregation schemes can be
           specified.  These options are best used together, but aggregation can
           be predefined while strength of connection is not.

           For predefined strength of connection, use a list consisting of
           tuples of the form ('predefined', {'C' : C0}), where C0 is a
           csr_matrix and each degree-of-freedom in C0 represents a supernode.
           For instance to predefine a three-level hierarchy, use
           [('predefined', {'C' : C0}), ('predefined', {'C' : C1}) ].

           Similarly for predefined aggregation, use a list of tuples.  For
           instance to predefine a three-level hierarchy, use [('predefined',
           {'AggOp' : Agg0}), ('predefined', {'AggOp' : Agg1}) ], where the
           dimensions of A, Agg0 and Agg1 are compatible, i.e.  Agg0.shape[1] ==
           A.shape[0] and Agg1.shape[1] == Agg0.shape[0].  Each AggOp is a
           csr_matrix.

           Because this is a root-nodes solver, if a member of the predefined
           aggregation list is predefined, it must be of the form
           ('predefined', {'AggOp' : Agg, 'Cnodes' : Cnodes}).

    Examples
    --------
    >>> from pyamg import rootnode_solver
    >>> from pyamg.gallery import poisson
    >>> from scipy.sparse.linalg import cg
    >>> import numpy as np
    >>> A = poisson((100, 100), format='csr')           # matrix
    >>> b = np.ones((A.shape[0]))                   # RHS
    >>> ml = rootnode_solver(A)                     # AMG solver
    >>> M = ml.aspreconditioner(cycle='V')             # preconditioner
    >>> x, info = cg(A, b, tol=1e-8, maxiter=30, M=M)   # solve with CG

    References
    ----------
    .. [1996VaMa] Vanek, P. and Mandel, J. and Brezina, M.,
       "Algebraic Multigrid by Smoothed Aggregation for
       Second and Fourth Order Elliptic Problems",
       Computing, vol. 56, no. 3, pp. 179--196, 1996.
       http://citeseer.ist.psu.edu/vanek96algebraic.html
    .. [2011OlScTu] Olson, L. and Schroder, J. and Tuminaro, R.,
       "A general interpolation strategy for algebraic
       multigrid using energy minimization", SIAM Journal
       on Scientific Computing (SISC), vol. 33, pp.
       966--991, 2011.

    """
    if not (isspmatrix_csr(A) or isspmatrix_bsr(A)):
        try:
            A = csr_matrix(A)
            warn("Implicit conversion of A to CSR",
                 SparseEfficiencyWarning)
        except BaseException:
            raise TypeError('Argument A must have type csr_matrix, \
                             bsr_matrix, or be convertible to csr_matrix')

    A = A.asfptype()

    if (symmetry != 'symmetric') and (symmetry != 'hermitian') and \
            (symmetry != 'nonsymmetric'):
        raise ValueError('expected \'symmetric\', \'nonsymmetric\' \
                          or \'hermitian\' for the symmetry parameter ')
    A.symmetry = symmetry

    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')
    # Right near nullspace candidates use constant for each variable as default
    if B is None:
        B = np.kron(np.ones((int(A.shape[0]/blocksize(A)), 1), dtype=A.dtype),
                    np.eye(blocksize(A)))
    else:
        B = np.asarray(B, dtype=A.dtype)
        if len(B.shape) == 1:
            B = B.reshape(-1, 1)
        if B.shape[0] != A.shape[0]:
            raise ValueError('The near null-space modes B have incorrect \
                              dimensions for matrix A')
        if B.shape[1] < blocksize(A):
            raise ValueError('B.shape[1] must be >= the blocksize of A')

    # Left near nullspace candidates
    if A.symmetry == 'nonsymmetric':
        if BH is None:
            BH = B.copy()
        else:
            BH = np.asarray(BH, dtype=A.dtype)
            if len(BH.shape) == 1:
                BH = BH.reshape(-1, 1)
            if BH.shape[1] != B.shape[1]:
                raise ValueError('The number of left and right near \
                                  null-space modes B and BH, must be equal')
            if BH.shape[0] != A.shape[0]:
                raise ValueError('The near null-space modes BH have \
                                  incorrect dimensions for matrix A')

    # Levelize the user parameters, so that they become lists describing the
    # desired user option on each level.
    max_levels, max_coarse, strength =\
        levelize_strength_or_aggregation(strength, max_levels, max_coarse)
    max_levels, max_coarse, aggregate =\
        levelize_strength_or_aggregation(aggregate, max_levels, max_coarse)
    improve_candidates =\
        levelize_smooth_or_improve_candidates(improve_candidates, max_levels)
    smooth = levelize_smooth_or_improve_candidates(smooth, max_levels)

    # Construct multilevel structure
    levels = []
    levels.append(multilevel_solver.level())
    levels[-1].A = A          # matrix

    # Append near nullspace candidates
    levels[-1].B = B          # right candidates
    if A.symmetry == 'nonsymmetric':
        levels[-1].BH = BH    # left candidates

    while len(levels) < max_levels and \
            int(levels[-1].A.shape[0]/blocksize(levels[-1].A)) > max_coarse:
        extend_hierarchy(levels, strength, aggregate, smooth,
                         improve_candidates, diagonal_dominance, keep)

    ml = multilevel_solver(levels, **kwargs)
    change_smoothers(ml, presmoother, postsmoother)
    return ml
コード例 #9
0
def setup_complexity(sa, strength, smooth, improve_candidates, aggregate,
                     presmoother, postsmoother, keep, max_levels, max_coarse,
                     coarse_solver, symmetry):
    '''
    Given a solver hierarchy, sa, and all of the setup parameters,
    compute abstractly the "work" required to form the solver hierarchy
    '''
    max_levels, max_coarse, strength = levelize_strength_or_aggregation(
        strength, max_levels, max_coarse)
    max_levels, max_coarse, aggregate = levelize_strength_or_aggregation(
        aggregate, max_levels, max_coarse)
    improve_candidates = levelize_smooth_or_improve_candidates(
        improve_candidates, max_levels)
    smooth = levelize_smooth_or_improve_candidates(smooth, max_levels)
    work = 0.0
    nlevels = len(sa.levels)

    ##
    # Convert everything to list
    if isinstance(presmoother, tuple):
        presmoother = [presmoother]
    if isinstance(postsmoother, tuple):
        postsmoother = [postsmoother]
    if isinstance(presmoother, str):
        presmoother = [(presmoother, {})]
    if isinstance(postsmoother, str):
        postsmoother = [(postsmoother, {})]
    ##
    # Repeat final smoothing strategy till end of hiearchy
    for i in range(len(presmoother), len(sa.levels)):
        presmoother.append(presmoother[-1])
    for i in range(len(postsmoother), len(sa.levels)):
        postsmoother.append(postsmoother[-1])

    for i, lvl in enumerate(sa.levels):
        ##
        # Compute work for smoothing P
        if i < nlevels - 1:
            fn, kwargs = unpack_arg(smooth[i])
            ##
            # Account for the mat-mat mult A*P
            try:
                ##
                # This is if you're using energy-min, then
                # account for the roughly 6 mat-mat additions
                maxiter = kwargs['maxiter']
                work += 6 * lvl.P.nnz * maxiter
            except:
                maxiter = 1
            work += lvl.A.nnz * (lvl.P.nnz / float(lvl.P.shape[0])) * maxiter
            ##
            # Account for constraint enforcement mat-vec operations
            #work += lvl.P.nnz*lvl.B.shape[1]

        ##
        # Compute work for computing SoC
        if i < nlevels - 1:
            fn, kwargs = unpack_arg(strength[i])
            #work += lvl.A.nnz*(lvl.A.nnz/float(lvl.A.shape[0]))

            ##
            # Compute the work for kwargs['k'] > 2
            #     (nnz to compute) * (average stencil size in matrix that you're multiplying)
            if fn == 'evolution':
                work += lvl.A.nnz * ((lvl.A**(int(kwargs['k'] / 2))).nnz /
                                     float(lvl.A.shape[0]))

        ##
        # Compute work for computing RAP
        if i < nlevels - 1:
            work += lvl.A.nnz * (lvl.P.nnz / float(lvl.P.shape[0])) * 2

        ##
        # Compute work for any Schwarz relaxation
        if i < nlevels - 1:
            fn1, kwargs1 = unpack_arg(presmoother[i])
            fn2, kwargs2 = unpack_arg(postsmoother[i])
            if (fn1 == 'schwarz') or (fn2 == 'schwarz'):
                S = lvl.A
            if (fn1 == 'strength_based_schwarz') or (
                    fn2 == 'strength_based_schwarz'):
                S = lvl.C
            ##
            if ((fn1.find('schwarz') > 0) or (fn2.find('schwarz') > 0)):
                rowlen = S.indptr[1:] - S.indptr[:-1]
                work += sum(rowlen**3)
        ##
        # Compute work for smoothing B
        if i < nlevels - 1:
            fn, kwargs = unpack_arg(improve_candidates[i])

            if fn is not None:
                ##
                # Compute cost multiplier for relaxation method
                cost_factor = 1
                if fn.endswith(('nr', 'ne')):
                    cost_factor *= 2
                if kwargs.has_key('sweep'):
                    if kwargs['sweep'] == 'symmetric':
                        cost_factor *= 2
                if kwargs.has_key('iterations'):
                    cost_factor *= kwargs['iterations']
                if kwargs.has_key('degree'):
                    cost_factor *= kwargs['degree']

                work += cost_factor * lvl.A.nnz * lvl.B.shape[1]

    return work / float(sa.levels[0].A.nnz)