コード例 #1
0
    def mol_dyn_sampling(self,md_work, i, N, T1, T2, dt, Nc, Ns, sig, gpuid):
        activ = aat.moldynactivelearning(self.netdict['cnstfile'],
                                         self.netdict['saefile'],
                                         self.netdict['nnfprefix'],
                                         self.netdict['num_nets'],
                                         gpuid)

        difo = open(self.ldtdir + self.datdir + '/info_data_mdso-'+str(i)+'.nfo', 'w')
        Nmol = 0
        dnfo = 'MD Sampler running: ' + str(md_work.size)
        difo.write(dnfo + '\n')
        Nmol = md_work.size
        ftme_t = 0.0
        for di, id in enumerate(md_work):
            data = hdt.read_rcdb_coordsandnm(id)
            #print(di, ') Working on', id, '...')
            S = data["species"]

            if "charge" in data and "multip" in data:
                chg = data["charge"]
                mlt = data["multip"]
            else:
                chg = "0"
                mlt = "1"

            # Set mols
            activ.setmol(data["coordinates"], S)

            # Generate conformations
            X = activ.generate_conformations(N, T1, T2, dt, Nc, Ns, dS=sig)

            ftme_t += activ.failtime

            nfo = activ._infostr_
            m = id.rsplit('/',1)[1].rsplit('.',1)[0]
            difo.write('  -' + m + ': ' + nfo + '\n')
            difo.flush()
            #print(nfo)

            if X.size > 0:
                hdt.writexyzfilewc(self.cdir + 'mds_' + m.split('.')[0] + '_' + str(i).zfill(2) + str(di).zfill(4) + '.xyz', X, S, ' '+chg+' '+mlt)
        difo.write('Complete mean fail time: ' + "{:.2f}".format(ftme_t / float(Nmol)) + '\n')
        print(Nmol)
        del activ
        difo.close()
コード例 #2
0
    #(1.00,'/home/jujuman/Research/GDB-11-AL-wB97x631gd/dnnts_red/dnntsgdb11_03_red/inputs/'),
    #(1.00,'/home/jujuman/Research/GDB-11-AL-wB97x631gd/dnnts_red/dnntsgdb11_04_red/inputs/'),
    #(0.50,'/home/jujuman/Research/GDB-11-AL-wB97x631gd/dnnts_red/dnntsgdb11_05_red/inputs/'),
    #(0.35,'/home/jujuman/Research/GDB-11-AL-wB97x631gd/dnnts_red/dnntsgdb11_06_red/inputs/'),
    #(1.0, '/home/jujuman/Research/GDB-11-AL-wB97x631gd/elements_SFCl/gdb11_size1/inputs/'),
    #(1.0, '/home/jujuman/Research/GDB-11-AL-wB97x631gd/elements_SFCl/gdb11_size2/inputs/'),
    #(1.0, '/home/jujuman/Research/GDB-11-AL-wB97x631gd/elements_SFCl/gdb11_size3/inputs/'),
    #(1.0, '/home/jujuman/Research/GDB-11-AL-wB97x631gd/elements_SFCl/gdb11_size4/inputs/'),
    (1.0,
     '/home/jujuman/Research/GDB-11-AL-wB97x631gd/elements_SFCl/gdb11_size5/inputs/'
     ),
]

#-------------------------------------------

activ = pya.moldynactivelearning(cnstfile, saefile, wkdir + 'train', 5)

difo = open(dstore + 'info_data_mdso.nfo', 'w')
Nmol = 0
ftme = 0.0
for di, id in enumerate(idir):
    files = os.listdir(id[1])
    random.shuffle(files)

    dnfo = str(di) + ' of ' + str(
        len(idir)) + ') dir: ' + str(id) + ' Selecting: ' + str(
            id[0] * len(files))
    print(dnfo)
    Nmol += len(files)
    difo.write(dnfo + '\n')
    ftme_t = 0.0