def test_missing_annotations(self): # test simple model, check that we get to global optimum nclasses, nannotators, nitems = 2, 3, 10000 # create random model and data (this is our ground truth model) true_model = ModelB.create_initial_state(nclasses, nannotators) annotations = true_model.generate_annotations(nitems) # remove about 10% of the annotations for _ in range(nitems * nannotators // 10): i = np.random.randint(nitems) j = np.random.randint(nannotators) annotations[i, j] = MV # create a new, empty model and infer back the parameters model = ModelB.create_initial_state(nclasses, nannotators) before_llhood = (model.log_likelihood(annotations) + model._log_prior(model.pi, model.theta)) model.map(annotations, epsilon=1e-3, max_epochs=1000) after_llhood = (model.log_likelihood(annotations) + model._log_prior(model.pi, model.theta)) testing.assert_allclose(model.pi, true_model.pi, atol=1e-1, rtol=0.) testing.assert_allclose(model.theta, true_model.theta, atol=1e-1, rtol=0.) self.assertGreater(after_llhood, before_llhood)
def test_random_model(self): nclasses = 4 nannotators = 6 nitems = 8 # check size of parameters model = ModelB.create_initial_state(nclasses, nannotators) self.assertEqual(model.pi.shape, (nclasses, )) assert_is_distributions(model.pi) self.assertEqual(model.theta.shape, (nannotators, nclasses, nclasses)) assert_is_distributions(model.theta, axis=2) # check mean and variance of distribution beta = np.array([10., 2., 30., 5.]) alpha = np.random.randint(1, 30, size=(nclasses, nclasses)).astype(float) # collect random parameters nsamples = 1000 pis = np.zeros((nsamples, nclasses)) thetas = np.zeros((nsamples, nannotators, nclasses, nclasses)) for n in xrange(nsamples): model = ModelB.create_initial_state(nclasses, nannotators, alpha, beta) pis[n, :] = model.pi thetas[n, ...] = model.theta assert_is_dirichlet(pis, beta) for j in xrange(nannotators): for k in xrange(nclasses): assert_is_dirichlet(thetas[:, j, k, :], alpha[k, :])
def test_missing_annotations(self): # test simple model, check that we get to global optimum nclasses, nannotators, nitems = 2, 3, 10000 # create random model and data (this is our ground truth model) true_model = ModelB.create_initial_state(nclasses, nannotators) annotations = true_model.generate_annotations(nitems) # remove about 10% of the annotations for _ in range(nitems*nannotators//10): i = np.random.randint(nitems) j = np.random.randint(nannotators) annotations[i,j] = MV # create a new, empty model and infer back the parameters model = ModelB.create_initial_state(nclasses, nannotators) before_llhood = (model.log_likelihood(annotations) + model._log_prior(model.pi, model.theta)) model.map(annotations, epsilon=1e-3, max_epochs=1000) after_llhood = (model.log_likelihood(annotations) + model._log_prior(model.pi, model.theta)) testing.assert_allclose(model.pi, true_model.pi, atol=1e-1, rtol=0.) testing.assert_allclose(model.theta, true_model.theta, atol=1e-1, rtol=0.) self.assertGreater(after_llhood, before_llhood)
def test_random_model(self): nclasses = 4 nannotators = 6 nitems = 8 # check size of parameters model = ModelB.create_initial_state(nclasses, nannotators) self.assertEqual(model.pi.shape, (nclasses,)) assert_is_distributions(model.pi) self.assertEqual(model.theta.shape, (nannotators, nclasses, nclasses)) assert_is_distributions(model.theta, axis=2) # check mean and variance of distribution beta = np.array([10., 2., 30., 5.]) alpha = np.random.randint(1, 30, size=(nclasses, nclasses)).astype(float) # collect random parameters nsamples = 1000 pis = np.zeros((nsamples, nclasses)) thetas = np.zeros((nsamples, nannotators, nclasses, nclasses)) for n in xrange(nsamples): model = ModelB.create_initial_state(nclasses, nannotators, alpha, beta) pis[n,:] = model.pi thetas[n,...] = model.theta assert_is_dirichlet(pis, beta) for j in xrange(nannotators): for k in xrange(nclasses): assert_is_dirichlet(thetas[:,j,k,:], alpha[k,:])
def test_map_estimation(self): # test simple model, check that we get to global optimum nclasses, nannotators, nitems = 2, 3, 10000 # create random model and data (this is our ground truth model) true_model = ModelB.create_initial_state(nclasses, nannotators) annotations = true_model.generate_annotations(nitems) # create a new, empty model and infer back the parameters model = ModelB.create_initial_state(nclasses, nannotators) before_llhood = (model.log_likelihood(annotations) + model._log_prior(model.pi, model.theta)) model.map(annotations, epsilon=1e-3, max_epochs=1000) after_llhood = (model.log_likelihood(annotations) + model._log_prior(model.pi, model.theta)) # errors in the estimation are due to the the high uncertainty over # real labels, due to the relatively high error probability under the # prior testing.assert_allclose(model.pi, true_model.pi, atol=0.05, rtol=0.) testing.assert_allclose(model.theta, true_model.theta, atol=0.05, rtol=0.) self.assertGreater(after_llhood, before_llhood)
def test_inference(self): # perfect annotation, check that inferred label is correct nclasses, nitems = 3, 50 * 8 nannotators = 12 # create random model (this is our ground truth model) alpha = np.eye(nclasses) beta = np.ones((nclasses, )) * 1e10 true_model = ModelB.create_initial_state(nclasses, nannotators, alpha, beta) # create random data labels = true_model.generate_labels(nitems) annotations = true_model.generate_annotations_from_labels(labels) posterior = true_model.infer_labels(annotations) testing.assert_allclose(posterior.sum(1), 1., atol=1e-6, rtol=0.) inferred = posterior.argmax(1) testing.assert_equal(inferred, labels) self.assertTrue(np.all(posterior[np.arange(nitems), inferred] > 0.999)) # at chance annotation, disagreeing annotators: get back prior pi = np.random.dirichlet(np.random.random(nclasses) * 3) theta = np.ones((nannotators, nclasses, nclasses)) / nclasses model = ModelB(nclasses, nannotators, pi=pi, theta=theta) data = np.array([[MV, 0, 1, 2, MV, MV, MV, MV, MV, MV, MV, MV]]) posterior = model.infer_labels(data) testing.assert_almost_equal(np.squeeze(posterior), model.pi, 6)
def test_generate_annotations(self): nclasses = 4 nannotators = 6 nitems = 4 model = ModelB.create_initial_state(nclasses, nannotators) # test functionality of generate_annotations method anno = model.generate_annotations(100) self.assertEqual(anno.shape[0], 100) self.assert_(model.are_annotations_compatible(anno)) # check that returned annotations match the prior nsamples = 3000 labels = np.arange(nclasses) annotations = np.empty((nsamples, nitems, nannotators), dtype=int) for i in xrange(nsamples): annotations[i,:,:] = model.generate_annotations_from_labels(labels) for j in xrange(nannotators): for i in xrange(nitems): # NOTE here we use the fact the the prior is the same for all # annotators tmp = annotations[:,i,j] freq = np.bincount(tmp, minlength=nclasses) / float(nsamples) testing.assert_almost_equal(freq, model.theta[j,labels[i],:], 1)
def test_generate_annotations(self): nclasses = 4 nannotators = 6 nitems = 4 model = ModelB.create_initial_state(nclasses, nannotators) # test functionality of generate_annotations method anno = model.generate_annotations(100) self.assertEqual(anno.shape[0], 100) self.assert_(model.are_annotations_compatible(anno)) # check that returned annotations match the prior nsamples = 3000 labels = np.arange(nclasses) annotations = np.empty((nsamples, nitems, nannotators), dtype=int) for i in xrange(nsamples): annotations[i, :, :] = model.generate_annotations_from_labels( labels) for j in xrange(nannotators): for i in xrange(nitems): # NOTE here we use the fact the the prior is the same for all # annotators tmp = annotations[:, i, j] freq = np.bincount(tmp, minlength=nclasses) / float(nsamples) testing.assert_almost_equal(freq, model.theta[j, labels[i], :], 1)
def test_inference(self): # perfect annotation, check that inferred label is correct nclasses, nitems = 3, 50*8 nannotators = 12 # create random model (this is our ground truth model) alpha = np.eye(nclasses) beta = np.ones((nclasses,)) * 1e10 true_model = ModelB.create_initial_state(nclasses, nannotators, alpha, beta) # create random data labels = true_model.generate_labels(nitems) annotations = true_model.generate_annotations_from_labels(labels) posterior = true_model.infer_labels(annotations) testing.assert_allclose(posterior.sum(1), 1., atol=1e-6, rtol=0.) inferred = posterior.argmax(1) testing.assert_equal(inferred, labels) self.assertTrue(np.all(posterior[np.arange(nitems),inferred] > 0.999)) # at chance annotation, disagreeing annotators: get back prior pi = np.random.dirichlet(np.random.random(nclasses)*3) theta = np.ones((nannotators, nclasses, nclasses)) / nclasses model = ModelB(nclasses, nannotators, pi=pi, theta=theta) data = np.array([[MV, 0, 1, 2, MV, MV, MV, MV, MV, MV, MV, MV]]) posterior = model.infer_labels(data) testing.assert_almost_equal(np.squeeze(posterior), model.pi, 6)
def test_log_likelihood(self): # check that log likelihood is maximal at true parameters nclasses, nannotators, nitems = 3, 5, 1500*8 # create random model and data (this is our ground truth model) true_model = ModelB.create_initial_state(nclasses, nannotators) annotations = true_model.generate_annotations(nitems) max_llhood = true_model.log_likelihood(annotations) # perturb pi for _ in xrange(20): theta = true_model.theta pi = np.random.normal(loc=true_model.pi, scale=0.1) pi = np.clip(pi, 0.001, 1.) pi /= pi.sum() model = ModelB(nclasses, nannotators, pi=pi, theta=theta, alpha=true_model.alpha, beta=true_model.beta) llhood = model.log_likelihood(annotations) self.assertGreater(max_llhood, llhood) # perturb theta for _ in xrange(20): pi = true_model.pi theta = np.random.normal(loc=true_model.theta, scale=0.1) theta = np.clip(theta, 0.001, 1.) for j in xrange(nannotators): for k in xrange(nclasses): theta[j,k,:] /= theta[j,k,:].sum() model = ModelB(nclasses, nannotators, pi=pi, theta=theta, alpha=true_model.alpha, beta=true_model.beta) llhood = model.log_likelihood(annotations) self.assertGreater(max_llhood, llhood)
def estimate_quality_instance_level(annotations, pmids): m, workers = get_M_overall(annotations, pmids) instance_model = ModelB.create_initial_state(2, len(workers)) anno = AnnotationsContainer.from_array(m, missing_values=[2]) instance_model.map(anno.annotations) proxy_skill = (instance_model.theta[:,0,0] + instance_model.theta[:,1,1]) / 2.0 return dict(zip(workers, proxy_skill))
def test_sampling_theta(self): nclasses, nitems = 3, 8*500 nannotators = 5 nsamples = 100 # create random model (this is our ground truth model) true_model = ModelB.create_initial_state(nclasses, nannotators) # create random data annotations = true_model.generate_annotations(nitems) # remove about 1/3 of the annotations for _ in range(nitems*nannotators//3): i = np.random.randint(nitems) j = np.random.randint(nannotators) annotations[i,j] = MV # create a new model model = ModelB.create_initial_state(nclasses, nannotators) # get optimal parameters (to make sure we're at the optimum) model.mle(annotations) # modify parameters, to give false start to sampler real_theta = model.theta.copy() model.theta = model._random_theta(nclasses, nannotators, model.alpha) # save current parameters pi_before, theta_before = model.pi.copy(), model.theta.copy() theta, pi, label = model.sample_posterior_over_accuracy( annotations, nsamples, burn_in_samples = 100, thin_samples = 2, return_all_samples = True ) self.assertEqual(theta.shape[0], nsamples) self.assertEqual(pi.shape, (nsamples, nclasses)) self.assertEqual(label.shape, (nsamples, nitems)) # test: the mean of the sampled parameters is the same as the MLE one # (up to 3 standard deviations of the estimate sample distribution) testing.assert_array_less(np.absolute(theta.mean(0)-real_theta), 3.*theta.std(0)) # check that original parameters are intact testing.assert_equal(model.pi, pi_before) testing.assert_equal(model.theta, theta_before)
def test_sampling_theta(self): nclasses, nitems = 3, 8 * 500 nannotators = 5 nsamples = 100 # create random model (this is our ground truth model) true_model = ModelB.create_initial_state(nclasses, nannotators) # create random data annotations = true_model.generate_annotations(nitems) # remove about 1/3 of the annotations for _ in range(nitems * nannotators // 3): i = np.random.randint(nitems) j = np.random.randint(nannotators) annotations[i, j] = MV # create a new model model = ModelB.create_initial_state(nclasses, nannotators) # get optimal parameters (to make sure we're at the optimum) model.mle(annotations) # modify parameters, to give false start to sampler real_theta = model.theta.copy() model.theta = model._random_theta(nclasses, nannotators, model.alpha) # save current parameters pi_before, theta_before = model.pi.copy(), model.theta.copy() theta, pi, label = model.sample_posterior_over_accuracy( annotations, nsamples, burn_in_samples=100, thin_samples=2, return_all_samples=True) self.assertEqual(theta.shape[0], nsamples) self.assertEqual(pi.shape, (nsamples, nclasses)) self.assertEqual(label.shape, (nsamples, nitems)) # test: the mean of the sampled parameters is the same as the MLE one # (up to 3 standard deviations of the estimate sample distribution) testing.assert_array_less(np.absolute(theta.mean(0) - real_theta), 3. * theta.std(0)) # check that original parameters are intact testing.assert_equal(model.pi, pi_before) testing.assert_equal(model.theta, theta_before)
def test_fix_map_nans(self): # bug is: when the number of classes in the annotations is smaller # than the one assumed by the model, the objective function of the # MAP estimation returns 'nan' true_nclasses = 3 nannotators = 5 true_model = ModelB.create_initial_state(true_nclasses, nannotators) annotations = true_model.generate_annotations(100) nclasses = 4 model = ModelB.create_initial_state(nclasses, nannotators) # manually run a few EM iteration init_accuracy = 0.6 mle_em_generator = model._map_em_step(annotations, init_accuracy) for i in range(3): objective, _, _, _ = mle_em_generator.next() self.assertFalse(np.isnan(objective))
def test_mle_estimation(self): # test simple model, check that we get to global optimum nclasses, nannotators, nitems = 2, 3, 10000 # create random model and data (this is our ground truth model) true_model = ModelB.create_initial_state(nclasses, nannotators) annotations = true_model.generate_annotations(nitems) # create a new, empty model and infer back the parameters model = ModelB.create_initial_state(nclasses, nannotators) before_llhood = model.log_likelihood(annotations) model.mle(annotations, epsilon=1e-3, max_epochs=1000) after_llhood = model.log_likelihood(annotations) # errors in the estimation are due to the the high uncertainty over # real labels, due to the relatively high error probability under the # prior testing.assert_allclose(model.pi, true_model.pi, atol=0.07, rtol=0.) testing.assert_allclose(model.theta, true_model.theta, atol=0.07, rtol=0.) self.assertGreater(after_llhood, before_llhood)
def main(): """ Entry point for standalone testing/debugging. """ from pyanno.models import ModelB model = ModelB.create_initial_state(4, 5) anno = model.generate_annotations(100) samples = model.sample_posterior_over_accuracy(anno, 10, return_all_samples=False) theta_view = plot_theta_tensor(model, 2, samples, title='Debug plot_theta_parameters') return model, theta_view
def estimate_quality_for_q(annotations, qnum, pmids=None): m, workers = get_M_q(annotations, qnum, pmids=pmids) q_model = ModelB.create_initial_state(2, len(workers)) anno = AnnotationsContainer.from_array(m, missing_values=[2]) q_model.map(anno.annotations) ''' pi[k] is the probability of label k theta[j,k,k'] is the probability that annotator j reports label k' for an item whose real label is k, i.e. P( annotator j chooses k' | real label = k) ''' # this is a simple mean of sensitivity and specificity # @TODO revisit? proxy_skill = (q_model.theta[:, 0, 0] + q_model.theta[:, 1, 1]) / 2.0 return dict(zip(workers, proxy_skill))
def test_generate_samples(self): nclasses = 4 nannotators = 6 nitems = 8 model = ModelB.create_initial_state(nclasses, nannotators) nsamples = 1000 labels = np.empty((nsamples, nitems), dtype=int) for i in xrange(nsamples): labels[i] = model.generate_labels(nitems) # NOTE here we make use of the fact that the prior is the same for all # items freq = (np.bincount(labels.flat, minlength=nclasses) / float(np.prod(labels.shape))) testing.assert_almost_equal(freq, model.pi, 2)
def test_annotations_compatibility(self): nclasses = 3 nannotators = 5 model = ModelB.create_initial_state(nclasses, nannotators) # test method that checks annotations compatibility anno = np.array([[0, 1, MV, MV, MV]]) self.assertTrue(model.are_annotations_compatible(anno)) anno = np.array([[0, 0, 0, 0]]) self.assertFalse(model.are_annotations_compatible(anno)) anno = np.array([[4, 0, 0, 0, 0]]) self.assertFalse(model.are_annotations_compatible(anno)) anno = np.array([[-2, MV, MV, MV, MV]]) self.assertFalse(model.are_annotations_compatible(anno))
def setUp(self): self.tmp_filename = mktemp(prefix='tmp_pyanno_db_') # fixtures self.model1 = ModelA.create_initial_state(4) self.annotations1 = self.model1.generate_annotations(100) self.value1 = self.model1.log_likelihood(self.annotations1) self.anno_container1 = AnnotationsContainer.from_array( self.annotations1) self.data_id1 = 'bogus.txt' self.model2 = ModelB.create_initial_state(4, 8) self.annotations2 = self.model2.generate_annotations(100) self.value2 = self.model2.log_likelihood(self.annotations2) self.anno_container2 = AnnotationsContainer.from_array( self.annotations2) self.data_id2 = 'bogus2.txt'
def test_map_stability(self): # test complex model, check that it is stable (converge back to optimum) nclasses, nannotators, nitems = 4, 10, 10000 # create random model and data (this is our ground truth model) true_model = ModelB.create_initial_state(nclasses, nannotators) annotations = true_model.generate_annotations(nitems) # create a new model with the true parameters, plus noise theta = true_model.theta + np.random.normal(loc=true_model.theta, scale=0.01/nclasses) pi = true_model.pi + np.random.normal(loc=true_model.pi, scale=0.01/nclasses) model = ModelB(nclasses, nannotators, pi, theta) model.map(annotations, epsilon=1e-3, max_epochs=1000) testing.assert_allclose(model.pi, true_model.pi, atol=0.05, rtol=0.) testing.assert_allclose(model.theta, true_model.theta, atol=0.05, rtol=0.)
def test_raise_error_on_incompatible_annotation(self): nclasses = 3 nannotators = 8 model = ModelB.create_initial_state(nclasses, nannotators) anno = np.array([[MV, MV, 0, 0, 7, MV, MV, MV]]) with self.assertRaises(PyannoValueError): model.mle(anno) with self.assertRaises(PyannoValueError): model.map(anno) with self.assertRaises(PyannoValueError): model.sample_posterior_over_accuracy(anno, 10) with self.assertRaises(PyannoValueError): model.infer_labels(anno) with self.assertRaises(PyannoValueError): model.log_likelihood(anno)
def test_map_stability(self): # test complex model, check that it is stable (converge back to optimum) nclasses, nannotators, nitems = 4, 10, 10000 # create random model and data (this is our ground truth model) true_model = ModelB.create_initial_state(nclasses, nannotators) annotations = true_model.generate_annotations(nitems) # create a new model with the true parameters, plus noise theta = true_model.theta + np.random.normal(loc=true_model.theta, scale=0.01 / nclasses) pi = true_model.pi + np.random.normal(loc=true_model.pi, scale=0.01 / nclasses) model = ModelB(nclasses, nannotators, pi, theta) model.map(annotations, epsilon=1e-3, max_epochs=1000) testing.assert_allclose(model.pi, true_model.pi, atol=0.05, rtol=0.) testing.assert_allclose(model.theta, true_model.theta, atol=0.05, rtol=0.)
def test_log_likelihood(self): # check that log likelihood is maximal at true parameters nclasses, nannotators, nitems = 3, 5, 1500 * 8 # create random model and data (this is our ground truth model) true_model = ModelB.create_initial_state(nclasses, nannotators) annotations = true_model.generate_annotations(nitems) max_llhood = true_model.log_likelihood(annotations) # perturb pi for _ in xrange(20): theta = true_model.theta pi = np.random.normal(loc=true_model.pi, scale=0.1) pi = np.clip(pi, 0.001, 1.) pi /= pi.sum() model = ModelB(nclasses, nannotators, pi=pi, theta=theta, alpha=true_model.alpha, beta=true_model.beta) llhood = model.log_likelihood(annotations) self.assertGreater(max_llhood, llhood) # perturb theta for _ in xrange(20): pi = true_model.pi theta = np.random.normal(loc=true_model.theta, scale=0.1) theta = np.clip(theta, 0.001, 1.) for j in xrange(nannotators): for k in xrange(nclasses): theta[j, k, :] /= theta[j, k, :].sum() model = ModelB(nclasses, nannotators, pi=pi, theta=theta, alpha=true_model.alpha, beta=true_model.beta) llhood = model.log_likelihood(annotations) self.assertGreater(max_llhood, llhood)