コード例 #1
0
    def test_identity_map_subset(self):
        num_vars = 3
        var_trans = define_iid_random_variable_transformation(
            stats.uniform(0, 1), num_vars)
        var_trans.set_identity_maps([1])

        samples = np.random.uniform(0, 1, (num_vars, 4))
        canonical_samples = var_trans.map_to_canonical_space(samples)
        assert np.allclose(canonical_samples[1, :], samples[1, :])

        assert np.allclose(
            var_trans.map_from_canonical_space(canonical_samples), samples)

        univariate_variables = [
            stats.uniform(-1, 2),
            stats.beta(1, 1, -1, 2),
            stats.norm(-1, np.sqrt(4)),
            stats.uniform(),
            stats.uniform(-1, 2),
            stats.beta(2, 1, -2, 3)
        ]
        var_trans = AffineRandomVariableTransformation(univariate_variables)
        var_trans.set_identity_maps([4, 2])

        from pyapprox.probability_measure_sampling import \
            generate_independent_random_samples
        samples = generate_independent_random_samples(var_trans.variable, 10)
        canonical_samples = var_trans.map_to_canonical_space(samples)
        assert np.allclose(canonical_samples[[2, 4], :], samples[[2, 4], :])

        assert np.allclose(
            var_trans.map_from_canonical_space(canonical_samples), samples)
コード例 #2
0
    def test_define_mixed_tensor_product_random_variable(self):
        """
        Construct a multivariate random variable from the tensor-product of
        different one-dimensional variables assuming that a given variable
        type the distribution parameters ARE NOT the same
        """
        univariate_variables = [
            stats.uniform(-1, 2),
            stats.beta(1, 1, -1, 2),
            stats.norm(-1, np.sqrt(4)),
            stats.uniform(),
            stats.uniform(-1, 2),
            stats.beta(2, 1, -2, 3)
        ]
        var_trans = AffineRandomVariableTransformation(univariate_variables)

        # first sample is on left boundary of all bounded variables
        # and one standard deviation to left of mean for gaussian variable
        # second sample is on right boundary of all bounded variables
        # and one standard deviation to right of mean for gaussian variable
        true_user_samples = np.asarray([[-1, -1, -3, 0, -1, -2],
                                        [1, 1, 1, 1, 1, 1]]).T

        canonical_samples = var_trans.map_to_canonical_space(true_user_samples)
        true_canonical_samples = np.ones_like(true_user_samples)
        true_canonical_samples[:, 0] = -1
        assert np.allclose(true_canonical_samples, canonical_samples)

        user_samples = var_trans.map_from_canonical_space(canonical_samples)
        assert np.allclose(user_samples, true_user_samples)
コード例 #3
0
    def test_define_mixed_tensor_product_random_variable_contin_discrete(self):
        """
        Construct a multivariate random variable from the tensor-product of
        different one-dimensional variables assuming that a given variable
        type the distribution parameters ARE NOT the same
        """
        # parameters of binomial distribution
        num_trials = 10
        prob_success = 0.5
        univariate_variables = [
            stats.uniform(),
            stats.norm(-1, np.sqrt(4)),
            stats.norm(-1, np.sqrt(4)),
            stats.binom(num_trials, prob_success),
            stats.norm(-1, np.sqrt(4)),
            stats.uniform(0, 1),
            stats.uniform(0, 1),
            stats.binom(num_trials, prob_success)
        ]
        var_trans = AffineRandomVariableTransformation(univariate_variables)

        # first sample is on left boundary of all bounded variables
        # and one standard deviation to left of mean for gaussian variables
        # second sample is on right boundary of all bounded variables
        # and one standard deviation to right of mean for gaussian variable
        true_user_samples = np.asarray([[0, -3, -3, 0, -3, 0, 0, 0],
                                        [1, 1, 1, num_trials, 1, 1, 1, 10]]).T

        canonical_samples = var_trans.map_to_canonical_space(true_user_samples)
        true_canonical_samples = np.ones_like(true_user_samples)
        true_canonical_samples[:, 0] = -1
        true_canonical_samples[5, 0] = -1
        true_canonical_samples[3, :] = [-1, 1]
        true_canonical_samples[7, :] = [-1, 1]
        assert np.allclose(true_canonical_samples, canonical_samples)

        user_samples = var_trans.map_from_canonical_space(canonical_samples)
        assert np.allclose(user_samples, true_user_samples)
コード例 #4
0
    def test_map_rv_discrete(self):
        nvars = 2

        mass_locs = np.arange(5, 501, step=50)
        nmasses = mass_locs.shape[0]
        mass_probs = np.ones(nmasses, dtype=float) / float(nmasses)
        univariate_variables = [
            float_rv_discrete(name='float_rv_discrete',
                              values=(mass_locs, mass_probs))()
        ] * nvars

        variables = IndependentMultivariateRandomVariable(univariate_variables)
        var_trans = AffineRandomVariableTransformation(variables)

        samples = np.vstack(
            [mass_locs[np.newaxis, :], mass_locs[0] * np.ones((1, nmasses))])
        canonical_samples = var_trans.map_to_canonical_space(samples)

        assert (canonical_samples[0].min() == -1)
        assert (canonical_samples[0].max() == 1)

        recovered_samples = var_trans.map_from_canonical_space(
            canonical_samples)
        assert np.allclose(recovered_samples, samples)
コード例 #5
0
    def help_discrete_induced_sampling(self, var1, var2, envelope_factor):
        degree = 3

        var_trans = AffineRandomVariableTransformation([var1, var2])
        pce_opts = define_poly_options_from_variable_transformation(var_trans)

        pce = PolynomialChaosExpansion()
        pce.configure(pce_opts)
        indices = compute_hyperbolic_indices(pce.num_vars(), degree, 1.0)
        pce.set_indices(indices)

        num_samples = int(3e4)
        np.random.seed(1)
        canonical_samples = generate_induced_samples(pce, num_samples)
        samples = var_trans.map_from_canonical_space(canonical_samples)

        np.random.seed(1)
        #canonical_xk = [2*get_distribution_info(var1)[2]['xk']-1,
        #                2*get_distribution_info(var2)[2]['xk']-1]
        xk = np.array([
            get_probability_masses(var)[0]
            for var in var_trans.variable.all_variables()
        ])
        pk = np.array([
            get_probability_masses(var)[1]
            for var in var_trans.variable.all_variables()
        ])
        canonical_xk = var_trans.map_to_canonical_space(xk)
        basis_matrix_generator = partial(basis_matrix_generator_1d, pce,
                                         degree)
        canonical_samples1 = discrete_induced_sampling(basis_matrix_generator,
                                                       pce.indices,
                                                       canonical_xk, pk,
                                                       num_samples)
        samples1 = var_trans.map_from_canonical_space(canonical_samples1)

        def univariate_pdf(var, x):
            if hasattr(var.dist, 'pdf'):
                return var.pdf(x)
            else:
                return var.pmf(x)
                xk, pk = get_probability_masses(var)
                x = np.atleast_1d(x)
                vals = np.zeros(x.shape[0])
                for jj in range(x.shape[0]):
                    for ii in range(xk.shape[0]):
                        if xk[ii] == x[jj]:
                            vals[jj] = pk[ii]
                            break
                return vals

        def density(x):
            # some issue with native scipy.pmf
            #assert np.allclose(var1.pdf(x[0, :]),var1.pmf(x[0, :]))
            return univariate_pdf(var1, x[0, :]) * univariate_pdf(
                var2, x[1, :])

        def generate_proposal_samples(n):
            samples = np.vstack([var1.rvs(n), var2.rvs(n)])
            return samples

        proposal_density = density

        # unlike fekete and leja sampling can and should use
        # pce.basis_matrix here. If use canonical_basis_matrix then
        # densities must be mapped to this space also which can be difficult
        samples2 = random_induced_measure_sampling(num_samples, pce.num_vars(),
                                                   pce.basis_matrix, density,
                                                   proposal_density,
                                                   generate_proposal_samples,
                                                   envelope_factor)

        def induced_density(x):
            vals = density(x) * christoffel_function(x, pce.basis_matrix, True)
            return vals

        from pyapprox.utilities import cartesian_product, outer_product
        from pyapprox.polynomial_sampling import christoffel_function
        quad_samples = cartesian_product([xk[0], xk[1]])
        quad_weights = outer_product([pk[0], pk[1]])

        # print(canonical_samples.min(axis=1),canonical_samples.max(axis=1))
        # print(samples.min(axis=1),samples.max(axis=1))
        # print(canonical_samples1.min(axis=1),canonical_samples1.max(axis=1))
        # print(samples1.min(axis=1),samples1.max(axis=1))
        # import matplotlib.pyplot as plt
        # plt.plot(quad_samples[0,:],quad_samples[1,:],'s')
        # plt.plot(samples[0,:],samples[1,:],'o')
        # plt.plot(samples1[0,:],samples1[1,:],'*')
        # plt.show()

        rtol = 1e-2
        assert np.allclose(quad_weights, density(quad_samples))
        assert np.allclose(density(quad_samples).sum(), 1)
        assert np.allclose(
            christoffel_function(quad_samples, pce.basis_matrix,
                                 True).dot(quad_weights), 1.0)
        true_induced_mean = quad_samples.dot(induced_density(quad_samples))
        # print(true_induced_mean)
        # print(samples.mean(axis=1))
        # print(samples1.mean(axis=1))
        # print(samples2.mean(axis=1))
        # print(samples1.mean(axis=1)-true_induced_mean, true_induced_mean*rtol)
        # print(samples2.mean(axis=1))
        assert np.allclose(samples.mean(axis=1), true_induced_mean, rtol=rtol)
        assert np.allclose(samples1.mean(axis=1), true_induced_mean, rtol=rtol)
        assert np.allclose(samples2.mean(axis=1), true_induced_mean, rtol=rtol)